Индукционный обогрев
Применяется с армированными конструкциями. Металлические элементы, содержащиеся внутри них, станут сердечниками. Изолированный кабель выполняет роль индуктора и размещается петлями вокруг арматуры. Количество мотков провода и сечение необходимо рассчитать предварительно. Вдоль кабеля пускается переменный ток, образующий электромагнитное поле. Затем происходит нагревание армирующих элементов, от них тепло переходит к бетону, постепенно распространяясь по всей смеси.
Расход электроэнергии достигает 150 кВт/ч на 1 м3 бетона.
Плюсы: низкая цена; равномерный прогрев.
Минусы: сложный расчет; ограниченность применения (балки, колонны и т. д.).
Отправить заявку
Инфракрасный подогрев
Инфракрасные лучи нагревают поверхность непрозрачных объектов, распространяя тепло на весь объем. При применении инфракрасного подогрева бетонную конструкцию необходимо окутать прозрачной пленкой – она задержит тепло, пропустив лучи через себя. Подходит для прогрева железобетона.
Плюсы: простота и доступность.
Минусы: подходит только для небольших, тонких конструкций; инфракрасное тепло распространяется неравномерно.
Инфракрасный нагреватель должен быть устойчивым к сильному ветру и способным долгое время работать без дозаправки.
Электродный прогрев бетона
Прогрев бетона электродами помогает сохранить необходимые параметры твердения раствора при заливке в холодное время. Этот способ подразумевает вживление в бетон или расположение на его поверхности электродов, которые затем подключают к трансформатору. В результате между ними образуется электрическое поле, согревающее бетон. Подбирая и регулируя выходные параметры трансформатора, можно добиться необходимой температуры прогрева бетона.
Важно помнить, что электрическое сопротивление бетона меняется по мере его твердения, причем проиходит это далеко не линейно:
Для чего это нужно?
Прежде чем углубляться в данную тему, необходимо поговорить о том, для чего же это собственно применяется. Дело в том, что любой бетон имеет в своем составе определенное количество воды. Вполне естественно, что при минусовой температуре она образует кристаллы льда. Последние приводят к тому, что на поры бетона оказывается большое давление, которое в конце концов приводит к частичному или полному разрушению структуры. Конечная прочность при этом значительно снижается, а эксплуатационные характеристики ухудшаются.
Еще один опасный фактор – замерзание воды в период схватывания (затвердевания). Дело в том, что при низкой температуре взаимодействие бетонной смеси и воды замедляется. Это приостанавливает процесс затвердевания, делая его неравномерным. То есть говорить о какой-либо заявленной прочности не приходится. Тем не менее сегодня есть не одна схема прогрева бетона электродами, которая позволяет держать влажностно-температурные характеристики в допустимом диапазоне.
Изменение удельного сопротивления в процессе электропрогрева бетонов различных марок
Завод-изготовитель цемента | Начальное удельное электросопротивления,Ом | Минимальное удельное электросопротивления,Ом |
Белгородский | 18,8 | 12,2 |
Жигулевский | 9,6 | 7,4 |
Подольский | 11,5 | 9,7 |
Ростовский | 8,5 | 7,2 |
Спасский | 8,0 | 4,9 |
Теплоозерский | 9,2 | 6,8 |
Поверхность раствора по окончании бетонирования и установки электродов укрывают утепляющими материалами. Прогревать бетон с не укрытыми поверхностями не допускается.
Электродный прогрев хорошо сочетаем с выдерживанием бетона методом термоса. Электродами прогревают только внешние слои во избежание потери тепла, полученного раствором перед заливкой.
Виды электродов
Существует несколько видов электродов, используемых для подогрева бетонного раствора. Наиболее применяемые из них:
Пластинчатые электроды
Пластичные электроды представляют собой металлические пластины, которые помещают между опалубкой и бетоном с разных сторон конструкции. После подключения к ним электрического потенциала образуется поле, нагревающее раствор.
Полосовые электроды
Этот тип электродов состоит из металлических полос от 20 до 50 мм шириной. Они также располагаются на верхнем слое раствора. Их отличительной способностью является возможность их расположения лишь с одной стороны конструкции. В этом случае электроды подключаются поочередно к разным фазам.
Полосовые электроды применяют при прогреве плит перекрытий и других горизонтальных элементов, а также бетона, соприкасающегося с мерзлым грунтом.
Стержневые электроды
Стержневые электроды по своей сути являются прутьями арматуры до 15 мм в диаметре, которые располагаются непосредственно в теле бетона.
Ими можно осуществить прогрев бетона конструкций сложной формы: балок, колонн, массивных плит, фундаментных башмаков, боковых поверхностей массивных конструкций.
Струнные электроды
Струнные электроды применяются в основном для прогрева колонн. Они имеют длину 2-3 метра и толщину около 15 мм. В центре конструкции устанавливается струнный электрод. Электрическое поле возникает между струной и опалубкой, обитой токопроводящим листом и подключенной к другой фазе электрической сети.
В качестве электродов в некоторых случаях могут быть использованы армирующие элементы самой конструкции. При этом значительно возрастают энергозатраты.
Выводы
Проведенные производственные испытания подтвердили, что удельные расходы электрической энергии зависят от длительности нагрева бетона и температуры. При обработке постоянным током затраты электроэнергии на 20–25% выше. Это объясняется дополнительными потерями на преобразование переменного тока в постоянный, а также затратами электроэнергии на электролиз воды.
При обработке постоянным током из-за выделения кислорода в процессе электролиза воды наблюдается интенсивная коррозия стальной арматуры и стальных форм, в которых изготавливают сборные изделия.
В случае обработки бетона постоянным током знакопеременных импульсов электроосмос, электролиз и электрофорез почти не влияют на динамику твердения бетона, а интенсификация этого процесса обусловлена только температурным фактором. Вследствие этого при прогреве изделий и конструкций из бетона и железобетона следует проводить обработку переменным током промышленной частоты. При этом обеспечивается аналогичный эффект, но не требуется использовать специальные генераторы для преобразования переменного тока в постоянный.
Схемы установки электродов
Тип электрода | Схема установки и подключения |
Пластинчатые | |
Полосовые | |
Стержневые | |
Струнные |
В таблице фазы обозначены цифрами ф1, ф2, ф3.
Преимущества прогрева электродами
- достаточно высокий КПД;
прогрев конструкций любой толщины в независимости от формы.
Недостатки прогрева электродами
- значительное время для подготовки;
- проведение предварительных расчетов;
- дополнительное оборудование (трансформаторы);
- высокие энергозатраты от 1000 кВт для 3—5 куб.м бетонной смеси;
- слабая применимость при заливке плит.
При поверхностном расположении электродов полностью можно прогреть только конструкции небольшой толщины. В противном случае будет осуществляться только периферийный прогрев.
Описание технологии прогрева бетона электродами и практические советы
Чтобы исключить кристаллизацию воды, входящей в состав бетонного раствора, необходимо поддерживать определенную температуру залитой массы. Дело в том, что вяжущее (цемент) вступает в реакцию именно с жидкостью, а не со льдом. А так как окончательное отвердевание бетона происходит в течение длительного времени (до 4 – 5 недель, в зависимости от особенностей производства работ и состава смеси), то его термообработка осуществляется постоянно, до полной готовности сооружаемой конструкции.
Понятно, что прогрев необходим только в холодное время года. Это позволяет вести работы в любой сезон, независимо от температуры окружающего воздуха. Существует много методик, но, пожалуй, самой распространенной является прогрев бетонной смеси электродами. Такие проводники эл/тока отличаются формой, размерами и спецификой размещения.
Но технология и принцип их действия остается неизменным – бетон разогревается эл/полем, которое образуется между электродами при подаче на них напряжения. Раствор становится элементом токопроводящей цепи (со своим внутренним сопротивлением), в котором энергия электрическая трансформируется в тепловую. Регулируя номинал напряжения, можно добиться требуемой температуры прогрева. В зависимости от особенностей «обрабатываемой» конструкции, подбирается оптимальный вариант данных элементов.
Разновидности электродов
Стержневые
В качестве таковых чаще всего используется арматурный пруток хотя можно устанавливать и узкие полосы металла (композитная арматура, понятное дело, не подойдет, а вот для армирования — то что надо). Его длина должна быть несколько большей толщины заливки (для включения в цепь), а сечение выбирается исходя из ее конструктивных особенностей и плана размещения электродов (как правило, для частного домостроения не более 10 мм). Чтобы арматура легче входила в раствор, один ее конец заостряется.
Стержневые электроды позволяют прогреть «заливку» с конфигурацией любой сложности и формы, поэтому используются чаще всего, особенно при индивидуальном строительстве. Их располагают перпендикулярно продольной оси конструкции. Причем так, чтобы они не соприкасались с прутьями армирующего каркаса.
Струнные
По сути, это разновидность тех же стержневых, но расположение – вдоль оси опалубки. Применяются при прогреве конструкций с малым сечением и большой длиной (балки, колонны и ряд других). Для упрощения присоединения проводов торчащие из опалубки края изгибаются верх (буквой «Г»).
В ряде случаев можно в качестве электродов использовать продольные прутья смонтированного в опалубке металлического каркаса. Но при таком способе прогрева резко увеличивается энергопотребление, поэтому и используется он реже. При этом соблюдаются особые меры предосторожности.
Полосовые
Представляют собой куски железных полос (20 – 50 мм, толщиной 3), которые укладываются поверх залитого раствора. Такой прогрев применяется для заливки малой толщины (массивная стяжка, плита и тому подобное), при этом все элементы размещаются на одной стороне конструкции.
Пластинчатые
Располагаются с противоположных сторон заливки, с внутренней стороны опалубки. Их габариты выбираются в соответствии с ее параметрами. Естественно, что устанавливаются они парами, количество которых и расстановка определяются индивидуально для каждой конструкции.
Виды прогрева
Сквозной (внутренний, погружной)
Применяется для конструкций, имеющих большую толщину или сложную форму. Из названия понятно, что электроды размещаются внутри залитой массы раствора. Общее правило – электроды устанавливаются на расстоянии не менее 3 см от элемента опалубки.
Периферийный (поверхностный, нашивной)
Под полосы устанавливается подкладка. На практике для этого чаще всего берутся куски рубероида, что позволяет такие электроды легко снимать и использовать многократно.
Общее правило
Если в опалубку установлен металлический каркас, то использовать напряжение более 127 В ЗАПРЕЩЕНО . Для конструкций неармированных оно может быть не более 380 В.
Что учесть при прогреве бетона
- По мере отвердевания залитой массы изменяется ее эл/сопротивление, так как происходит испарение влаги. Следовательно, необходимо систематически корректировать силу подаваемого тока, поэтому в схему обязательно должен быть включен элемент регулировки (например, реостат, трансформатор с несколькими выходами).
- Поверхность конструкции, подлежащей прогреву, должна быть укрыта материалами, снижающими теплопотери. Это могут быть опилки, маты, пленка п/э, рубероид и тому подобное. В противном случае сам процесс прогрева теряет смысл.
- При стержневом методе нужно соблюдать одинаковые расстояния между электродами как в одном ряду, так и в соседних. Это обеспечит равномерность загрузки «линий» и исключит перекос фаз.
- Снижения энергозатрат можно добиться введением в состав раствора специальных добавок-пластификаторов, ускоряющих процесс отвердевания бетона.
- Специалисты не рекомендуют применять электродный прогрев для мелких конструкций. Для этого существуют другие методики.
- В качестве «питания» нельзя использовать источник постоянного тока, так как в этом случае не избежать электролиза жидкости.
- При небольших объемах заливки в качестве источника напряжения можно использовать сварочные трансформаторы.
- Единой рекомендации по размещению электродов на (в) заливке раствора нет. Схема определяется индивидуально и зависит от внешних условий, параметров опалубки, марки цемента и ряда других факторов.
- Через определенные временные промежутки (зависят от специфики работ) делается замер температуры. Для этого проделываются специальные «шурфы».
- ЗАПРЕЩАЕТСЯ. При использовании прутьев арматурного каркаса в качестве электродов работать с напряжением свыше 60 В. В исключительных случаях (более этого номинала) – только при соблюдении дополнительных мер и локально (на отдельных сегментах конструкции).
Для получения из раствора качественного искусственного камня рекомендуется комплексный обогрев массы, сочетающий несколько методик, в том числе, и «пассивную» («термос»).
Воздействии тока на твердение бетона
При этом в литературе встречаются рекомендации по предпочтительному использованию для этих целей постоянного тока, что противоречит общераспространенной практике бетонирования, в которой преимущественно используется переменный ток. В этой статье мы рассмотрим преимущества и недостатки каждого из методов на основании данных опытно-промышленных исследований.
Оглавление
- Особенности использования электроподогрева в зимний период
- Сравнение обработки бетона постоянным и переменным током
- Результаты испытаний
- Выводы
Особенности использования электроподогрева в зимний период
Технология электропрогрева заключается во включении свежеуложенной бетонной смеси в электрическую цепь в качестве активного сопротивления. При этом обеспечивается заданная температура смеси, а гидратация и структурообразование бетона протекает в условиях воздействия ряда физико-химических процессов, включая электрическое и электромагнитное воздействие.
Рисунок 1. Схемы электропрогрева бетонной конструкции электродами
К основным явлениям, которые рассматриваются в качестве факторов ускоренного твердения бетона, относят:
- температура — является основным моментом, который напрямую влияет на процесс. Гидратация цемента происходит с выделением тепла экзотермических реакций (в начале процесса схватывания тепловыделение минимально, а в конце — достигает максимума). Условия окружающей среды являются определяющим фактором: сокращение времени схватывания наблюдается при росте температуры до 30°С, а затем наблюдается обратный эффект;
- электрофорез — электрокинетическое явление, сопровождающееся перемещением дисперсных частиц в жидкой среде при пропускании через нее постоянного электротока;
- электроосмос — перемещение жидкости между электродами при пропускании постоянного электротока через бетонную смесь;
- электролиз — выделение на электроде контактной фазы из кислорода и водорода, происходящее вследствие разложения воды под действием постоянного тока.
Рисунок 2. Электропрогревание бетонной смеси
Три последних фактора в производственных условиях оказывают незначительный эффект, однако в ряде источников им уделяется повышенное внимание. В частности, в Московской ветеринарной академии предложен метод обработки бетона, арболита и аналогичных смесей на цементной основе за счет воздействия постоянного электрического тока знакопеременных импульсов. Указывается, что явления электроосмоса, электролиза и электрофореза при таком варианте технологии происходят более интенсивно, нежели при воздействии переменного тока промышленной частоты.
Это, в свою очередь, вызывает ускоренное диспергирование цементных частиц, способствует повышению реакционной способности компонентов бетона, определяет более полную гидратацию цемента и повышает равномерность распределения цементного клея между частицами заполнителя и непрогидратированными зернами цемента. Авторы этой работы утверждают, что распалубочная прочность бетона при такой обработке достигается уже спустя 1–3 часа после укладки .
Рисунок 3. Структура цементного камня при схватывании бетона при разном водоцементном соотношении и степени гидратации
За счет электроподогрева при отрицательных температурах бетон в проектные сроки набирает марочную прочность без ухудшения прочих эксплуатационных и физико-механических свойств, что позволяет сократить сроки сдачи конструкции под нагрузку. Основным фактором, определяющим эффективность этого процесса, считается температура. В некоторых исследованиях ошибочно связывают ускорение процесса твердения с явлениями электроосмоса, электролиза и электрофореза.
Сравнение обработки бетона постоянным и переменным током
В ряде исследований обоснована несостоятельность гипотезы об ускорении структурообразования в бетоне при пропускании постоянного тока за счет интенсификации явлений электроосмоса, электролиза и электрофореза. В частности, НИИЖБ совместно с представителями Московского лесотехнического института и Московской ветеринарной академии провели производственный эксперимент по трамбованию арболитовых стеновых панелей 1,8х0,9х0,2 м в вертикальных формах с применением в электроподогрева.
Рисунок 4. Трехмерная модель стеновых панелей
Для получения сравнительной базы были исследованы два следующих варианта технологии:
- Панель №1 твердела под воздействием постоянного тока знакопеременных импульсов (питание от генератора П—91 50 кВА). Время изменения направления токовых импульсов составляло 5 мин с интервалом 1 мин. Рабочее напряжение выбирали таким образом, чтобы обеспечить плотность тока на электродах 40 А/м 2 .
- Панель №2 твердела под воздействием переменного тока промышленной частоты (питание от сварочного трансформатора ТД—500 У2). Напряжение регулировалось таким образом, чтобы температурный режим прогрева совпадал с условиями твердения панели №1.
Продолжительность электрообработки панелей составляла 70 мин. На протяжении этого времени зафиксирован рост температуры в центре изделий с 30°С до 45°С. По достижении этого значения электрическое воздействие было прекращено и оба ЖБИ после часового выдерживания распалубливания.
В ходе эксперимента выяснилось, что панели №1 и №2 сохраняют форму после снятия опалубки, однако визуальный осмотр выявил практически нулевую прочность арболита, поэтому снять изделия с поддона не представлялось возможным. Через сутки с большой осторожностью панели распилили на кубы 200х200 мм для проведения испытаний на сжатие.
Результаты испытаний
Испытания бетонных образцов, проведенные на 3, 7, 14, 28 и 90 сутки, показали, что в первые 7 суток при обработке постоянным током прочность арболита несколько выше, чем в случае обработки переменным током. Вероятно, этот эффект связан с удалением большего объема механически связанной влаги вследствие явления электроосмоса и процесса интенсификации кристаллизационного твердения цемента. Так как разница в показателях прочности составляет 4–5%, то обнаруженный эффект не имеет практического значения.
При сроке от 14 до 28 суток прочность обработанного постоянным током арболита намного ниже в сравнении с материалом, подвергшимся воздействию переменным током. Для образцов из панели №1 к 1 месяцу (к проектному возрасту) из-за избыточной влагопотери на начальном этапе твердения наблюдается недобор прочности на 25%, то прочность образцов из панели №2 практически достигла марочной.
Аналогичные результаты получены в ходе исследований, проведенных НИИЖБ и трестом Оргтехлесстрой В/О Союзлесстрой, а также экспериментов на в Мытищах при изготовлении панелей ОС-5 из бетона класса В12,5. В ходе всех трех испытаний установлено, что после распалубки изделия сохраняют форму в обоих вариантах обработки, однако прочность бетона при этом незначительна.
Таблица 2: «Способы обработки бетона током»
Способ обработки | Длительность обработки ч-мин | Температура бетона к концу обработки,°C | Прочность бетона, МПа, в возрасте, сут | Расход электроэнергии, (кВт╳ ╳ ч)м 3 | |||
1 | 3 | 7 | 28 | ||||
Постоянным током знакопеременными импульсами | |||||||
1-10 | 72 | 65 | — | — | 160 | 56 | |
2-45 | 63 | — | 80 | 150 | 155 | 53 | |
4-00 | 58 | 70 | — | 135 | 165 | 56 | |
Переменным током промышленной частоты | |||||||
1-15 | 84 | 35 | 85 | 135 | 174 | 40 | |
1-35 | 60 | 35 | — | 135 | 175 | 32 | |
2-00 | 82 | — | — | 120 | 160 | 50 | |
2-30 | 72 | 60 | 108 | 125 | 150 | 52 |
Данные исследований свидетельствуют о том, что даже через 1 сутки прочность материала не превышала 50%. В интервале от 3 до 28 суток прочность бетона по обоим вариантам обработки практически одинакова, что свидетельствует о воздействии на этот процесс только температурного фактора.
Выводы
Проведенные производственные испытания подтвердили, что удельные расходы электрической энергии зависят от длительности нагрева бетона и температуры. При обработке постоянным током затраты электроэнергии на 20–25% выше. Это объясняется дополнительными потерями на преобразование переменного тока в постоянный, а также затратами электроэнергии на электролиз воды.
При обработке постоянным током из-за выделения кислорода в процессе электролиза воды наблюдается интенсивная коррозия стальной арматуры и стальных форм, в которых изготавливают сборные изделия.
В случае обработки бетона постоянным током знакопеременных импульсов электроосмос, электролиз и электрофорез почти не влияют на динамику твердения бетона, а интенсификация этого процесса обусловлена только температурным фактором. Вследствие этого при прогреве изделий и конструкций из бетона и железобетона следует проводить обработку переменным током промышленной частоты. При этом обеспечивается аналогичный эффект, но не требуется использовать специальные генераторы для преобразования переменного тока в постоянный.
Прогрев бетона нагревательным проводом ПНСВ
Заливка бетона зимой имеет свои сложности. Главной проблемой считается нормальное затвердевание раствора, вода в котором может замерзнуть, и он не наберет технологической прочности. Даже если этого не случится, низкая скорость высыхания состава сделает работы нерентабельными. Прогрев бетона проводом ПНСВ поможет снять этот вопрос.
Электропрогрев бетона в зимнее время – наиболее удобный и дешевый способ достигнуть нужной твердости материала. Он разрешается нормами СП 70.13330.2012, и может применяться при выполнении любых строительных работ. После отвердевания бетона, провод остается внутри конструкции, поэтому применение дешевого ПНСВ дает дополнительный экономический эффект.
Температура при строительстве
Данный параметр имеет большое влияние на набор бетоном окончательной прочности. Также следует учесть, что свежий раствор может промерзать в том случае, когда в течение 3 дней его температура была на уровне +10° С. Поэтому необходим электродный прогрев бетона в зимнее время.Знайте, что при укладке бетона при 5° С, вам придется ждать в 2 раза дольше достижения им прочности, сравнить которую можно с температурой 20° С.
Когда же столбик термометра опустится ниже точки замерзания, гидратация может просто остановиться. Нельзя также забывать следующее — несвязанная вода в бетонном растворе при замерзании начнет увеличиваться в объеме.
Применение
Прогрев бетона в зимнее время кабелем дает возможность решить две основные проблемы. При температурах ниже нуля вода в растворе превращается в кристаллики льда, в результате реакция гидратации цемента не просто замедляется, она прекращается полностью. Известно, что при замерзании вода расширяется, разрушая образовавшиеся в растворе связи, поэтому после повышения температуры он уже не наберет нужной прочности.
Раствор затвердевает с оптимальной скоростью и сохранением характеристик при температуре порядка 20°C. При падении температуры, особенно ниже нуля, эти процессы замедляются, даже с учетом того, что при гидратации выделяется дополнительное тепло. Чтобы выдержать технические условия, зимой не обойтись без прогрева бетона проводом ПНСВ или другим предназначенным для этого кабелем в таких ситуациях, когда:
- не обеспечена достаточная теплоизоляция монолита и опалубки;
- монолит слишком массивен, что затрудняет его равномерный прогрев;
- низкая температура окружающего воздуха, при которой замерзает вода в растворе.
Зачем греть бетон
Особенности строительства ленточного фундамента зимой
Не секрет что применение цементосодержащих растворов осуществляется как в летнее, так и в зимнее время. Более того, ситуация в строительной индустрии подчас складывается таким образом, что отменить эти работы по причине «плохой» погоды нельзя.
Выходом из затруднительной ситуации стал обогрев бетона в зимнее время. Для того чтобы понять принцип сохранения эксплуатационных свойств материала, рассмотрим особенности его приготовления.
При существенных снижениях температуры, как это бывает зимой, вода замерзает. Следовательно, этот принципиально важный компонент не может участвовать в химических реакциях, которые протекают при формировании структуры бетона.
Более того, полностью прекращается гидратация сухих наполнителей, за счет чего становится невозможным твердение раствора до того состояния, когда может быть применена резка железобетона алмазными кругами.
Ещё одна важная причина для того чтобы подумать о том, как прогреть бетон в зимнее время, это внутреннее давление, растущее в толще материала. За счет прироста водного объема (в среднем на 10%), бетон разрушается, так как вышеперечисленным причинам не может затвердеть и окрепнуть.
Разумеется, по мере размораживания льда процесс гидратации возобновляется, но уже разрушенная конструкция смеси не способна полностью восстановиться. В итоге, прочностные характеристики бетона сильно снижаются, что негативно сказывается на долговечности строительных объектов и сооружений.
Итак, мы выяснили, что технология подогрева бетона в зимнее время целесообразна и необходима, теперь рассмотрим основные способы контроля температуры строительного материала.
Технология прогрева бетона
На фото — бетонирование с помощью термоматов
Поскольку цементосодержащие растворы применяются с давних пор, недостатка в способах контроля температуры бетона нет.
Тем не менее, наибольшую популярность получили следующие методы:
- применение противоморозных наполнителей, которые добавляются в состав на стадии производства смеси;
- использование «метода термоса»;
- прогрев бетона специализированными источниками тепла.
Рассмотрим каждый из вышеперечисленных методов подробнее.
Противоморозные добавки
Применение специальных противоморозных добавок применяется с давних пор. Этот метод эффективен, прост в реализации и цена применяемых ингредиентов невысока. Главным преимуществом данного способа является отсутствие необходимости в разогреве раствора, так как материал не замерзает, несмотря на отрицательные температуры в толще.
Тем не менее, этот метод имеет свои температурные ограничения. К примеру, наиболее востребованную добавку — нитрат натрия можно добавлять в бетон при температуре воздуха не ниже чем минус 15°.
Метод термоса
На фото опалубка, утепленная подручными средствами
«Метод термоса» — это более инновационная технология, в соответствии с которой готовый бетонный раствор заливается в утепленную опалубку. Температура внутреннего объема опалубки может достигать +25°С. Конструкция опалубки герметичная, в результате раствор приобретает требуемую прочность за счет сохранённого тепла и экзотермических выделений, исходящих от цемента.
Данная технология разогрева бетона предусматривает применения быстротвердеющих марок цемента. Эффективным решением является добавление в состав специальных добавок, ускоряющих ход твердения (нитрат натрия, кальций хлористый, калий углекислый и т.д.).
На фото — процесс укладки предварительно нагретого бетона
Отдельной разновидностью этой технологии является так называемый «горячий термос». В данном случае бетон сначала разогревается до температуры +70°С и заливается в термоизолированную опалубку.
Характеристики провода
Кабель для прогрева бетона ПНСВ состоит из стальной жилы с сечением от 0,6 до 4 мм², и диаметром от 1,2 мм до 3 мм. Некоторые виды покрываются оцинковкой, чтобы снизить воздействие агрессивных компонентов в строительных растворах. Дополнительно он покрыт термоустойчивой изоляцией их поливинилхлорида (ПВХ) или полиэстера, она не боится перегибов, истирания, агрессивных сред, прочна и обладает высоким удельным сопротивлением. Кабель ПНСВ обладает следующими техническими характеристиками:
- Удельное сопротивление составляет 0,15 Ом/м;
- Стабильная работа в температурном диапазоне от -60°C до +50°C;
- На 1 кубометр бетона расходуется до 60 м провода;
- Возможность применения до температур до -25°C;
- Монтаж при температурах до -15°C.
Кабель подключается к холодным концам через провод АПВ из алюминия. Питание может осуществляться через трехфазную сеть 380 В, подключаясь к трансформатору. При правильном расчете ПНСВ может подключаться и к бытовой сети 220 вольт, длина при этом не должна быть менее 120 м. По системе, находящейся в бетонном массиве должен протекать рабочий ток 14-16 А.
Конструкция и характеристики кабеля КДБС
Секция нагревательная кабельная КДБС представляет собой тепловыделяющий элемент на базе резистивного нагревательного кабеля в защитной ПВХ оболочке. С одной стороны он оснащен концевой муфтой, а с другой – соединительной муфтой, установочным проводом и наконечниками для подключения к питанию. Для подключения к сети подходит любой соединительный провод, например, АПВ (алюминиевые токопроводящие жилы).
Технические характеристики КБДС:
Пример обозначения нагревательной секции:
Номинальные параметры нагревательных секций КДБС фиксированной длины и мощности представлены в таблице:
Технология прогрева и схема укладки
Перед установкой системы прогрева бетона в зимнее время монтируется опалубка и арматура. После этого раскладывается ПНСВ с интервалом между проводами от 8 до 20 см, в зависимости от наружной температуры, ветра и влажности. Провод не натягивается и прикрепляется к арматуре специальными зажимами. Нельзя допускать изгибов радиусом менее 25 см и перехлестов токоведущих жил. Минимальное расстояние между ними должно составлять 1,5 см, это поможет не допустить короткого замыкания.
Наиболее популярная схема укладки ПНСВ – «змейка», напоминающая систему «теплый пол». Она обеспечивает обогрев максимального объема бетонного массива при экономии греющего кабеля. Перед заливкой в опалубку раствора необходимо убедиться в том, что в ней нет льда, температура смеси не ниже +5°C, а монтаж схемы подключения проведен правильно, на достаточную длину выведены холодные концы.
К проводу ПНСВ прикладывается инструкция, с которой нужно ознакомиться перед тем, как прогреть бетон. Подключение осуществляется через секции шинопроводов двумя способами через схему «треугольник» или «звезда». В первом случае систему разделяют на три параллельных участка, подключаемых к выводам трехфазного понижающего трансформатора. Во втором – три одинаковых провода соединяются в один узел, потом три свободных контакта аналогично подключаются к трансформатору. Питающее устройство устанавливается не далее, чем в 25 м от места подключения, прогреваемый участок обносится ограждением.
Система подключается после полной заливки всего объема строительного раствора. Технология прогрева бетона греющим кабелем ПНСВ включает в себя несколько этапов:
- Разогрев осуществляется со скоростью не более 10°C в час, что обеспечивает равномерное прогревание всего объема.
- Нагрев при постоянной температуре длится до тех пор, пока бетон не наберет половину технологической прочности. Температура не должна превышать 80°C, оптимальный показатель 60°C.
- Остывание бетона должно происходить со скоростью 5°C в час, это поможет избежать растрескивания массива и обеспечит его монолитность.
При соблюдении технологических требований материал наберет марку прочности, соответствующую его составу. По окончанию работ ПНСВ остается в толще бетона и служит дополнительным армирующим элементом.
Нужно отметить, что применять кабель КДБС или ВЕТ значительно проще, поскольку их можно подключать напрямую к сети 220 В через щитовую или розетку. Они разделены на секции, что помогает избежать перегрузки. Но эти кабели стоят дороже ПНСВ, поэтому реже применяется при строительстве крупных объектов.
Еще одна популярная технология – использование опалубки с ТЭН и электродами, когда арматура вставляется в раствор и подключается к сети, используя сварочный аппарат или понижающий трансформатор другого типа. Этот способ прогрева не требует специального греющего кабеля, но более энергозатратен, поскольку вода в бетоне играет роль проводника, а его сопротивление при затвердевании значительно возрастает.
Виды греющих проводов и кабелей
Наиболее часто для электроподогрева бетона применяют провода ПНСВ (провод нагревательный со стальной жилой и изоляцией из ПВХ пластиката). Популярность этого материала объясняется его сравнительно невысокой ценой и несложным монтажом.
Провод ПНСВ
Вместо ПНСВ можно использовать ПНСП. Этот провод отличается полипропиленовой изоляцией, что обеспечивает незначительное повышение максимальной мощности тепловыделения.
Марка провода Параметры | ПНСВ | ПНСП | ||||||
Номинальное значение электрического сопротивления 1 м нагревательной жилы, Ом | 0,12 | 0,18 | 0,22 | 0,11 | 0,12 | 0,14 | 0,18 | 0,22 |
Конструкция токопроводящей жилы | 1х1,2 | 1х1,1 | 1х1,0 | 1х1,4 | 1х1,2 | 1х1,3 | 1х1,1 | 1х1,0 |
Номинальный наружный диаметр, мм | 2,8 | 2,7 | 2,6 | 2,8 | 2,6 | 2,7 | 2,5 | 2,4 |
Рекомендуемая длина провода при напряжении 220В, м | 110 | 95 | 80 | 130 | 100 | 110 | 85 | 75 |
Расчетная масса 1 км провода, кг | 19 | 18,5 | 18 | 16,4 | 12,7 | 14,5 | 11,1 | 9,6 |
Таблица основных параметров ПНСВ и ПНСП
Такие провода также используют как напольные обогреватели, которые работают по принципу теплого пола. При использовании термопроводов этого типа необходимо рассчитывать их длину. Небольшую погрешность можно исправить путем регулировки уровня напряжения, которое поступает с трансформатора для прогрева бетона.
Применение ПНСВ эффективно, но усложняется необходимостью установки дополнительного оборудования для регулировки тепловой мощности путем изменения напряжения. Существенно проще работать с секционными термокабелями КДБС. Они напрямую подключаются к сети 220В, потому для их работы не требуется какое-либо оборудование. Купить такой нагревательный кабель можно в наших магазинах в Москве и Московской области.
Расчет длины
Чтобы рассчитать длину провода ПНСВ для прогрева бетона требуется учесть несколько основных факторов. Главный критерий – количество тепла, подаваемого на монолит для его нормального затвердевания. Оно зависит от температуры окружающего воздуха, влажности, наличия теплоизоляции, объема и формы конструкции.
В зависимости от температуры определяется шаг укладки кабеля со средней длиной петли от 28 од 36 м. При температуре до -5°C расстояние между жилами или шаг составляет 20 см, с понижением температуры на каждые 5 градусов, он уменьшается на 4 см, при -15°C он составляет 12 см.
При расчете длины важно знать потребляемую мощность нагревательного провода ПНСВ. Для самого популярного диаметра 1,2 мм она равна 0,15 Ом/м, у проводов с большим сечением сопротивление ниже диаметр 2 мм имеет сопротивление 0,044 Ом/м, а 3 мм – 0,02 Ом/м. Рабочий ток в жиле должен быть не более 16 А, поэтому потребляемая мощность одного метра ПНСВ диаметром 1,2 мм равна произведению квадрата силы тока на удельное сопротивление и составляет 38,4 Вт. Чтобы подсчитать суммарную мощность необходимо этот показатель умножить на длину уложенного провода.
Подобным образом рассчитывается и напряжение понижающего трансформатора. Если уложено 100 м ПНСВ диаметром 1,2 мм, то его общее сопротивление составит 15 Ом. Учитывая, что сила тока не более 16 А, находим рабочее напряжение, равное произведению силы тока на сопротивление в данном случае оно будет равно 240 В.
Применение провода ПНСВ – один из самых дешевых способов прогрева бетона. Но он больше годится для применения профессиональными строителями, поскольку для его подключения требуются специальное знание и оборудование. Этот кабель можно применять и в бытовых условиях, правильно рассчитав потребляемую мощность. Снизить расходы при прогреве раствора поможет применение теплоизоляционных материалов, в этом случае нагрев произойдет быстрее, а снижение температуры будет происходить равномернее, что улучшит качество бетона.
Способы зимнего бетонирования
Ниже будут рассмотрены все существующие методы зимнего бетонирования, их области применения, а также даны рекомендации по выбору метода выдерживания бетона в зависимости от вида возводимых монолитных железобетонных конструкций в зимний период времени при низких температурах.
Методы зимнего бетонирования | Особенности технологии | Примерный расход энергии, (кВт/ч)/м3 | Область применения |
«Термос» | В момент укладки температура бетонной смеси не менее 10оС; опалубка – утепленная; скорость остывания бетона — не более 50С/ч. | — | Массивные конструкции, в которых модуль поверхности (отношение площади поверхности возводимой конструкции к ее объему) Мп<3 |
Сквозной электродный прогрев | Подъем температуры: со скоростью не более 10оС/ч; Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности | 80 – 110 | Бетонные малоармированные конструкции: МП от 3 до 10, толщина – до 50 см |
Периферийный электрообогрев | Подъем температуры: со скоростью не более 150С/ч; Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности | 90 – 120 | Конструкции, в которых МП < 15; — при толщине до 20 см — односторонний прогрев и утепленная опалубка; — при толщине более 20 см – двусторонний прогрев. |
Предварительный форсированный электроразогрев, в том числе в опалубке с повторным вибрированием | Разогрев бетонной смеси за 10 – 15 мин до 70 –80оС. в бункерах /опалубке (после уплотнения). При МП<5 достаточно «термосно» выдержать в утепленной опалубке. При МП >5 может понадобиться дополнительный обогрев | 40 – 80 | Конструкции, в которых МП < 8. |
Кондуктивный обогрев или «греющая опалубка» | Подъем температуры: со скоростью не более 10оС/ч; Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности | 100 – 130 | МП > 8. |
Электропрогрев греющими проводами | Подъем температуры: со скоростью не более 100С/ч; Температура изотермы — не более 50оС; на контакте с бетоном температура нагревателя не более 80оС; продолжительность прогрева: до достижения критической прочности | 80 – 110 | МП > 10. |
Обогрев инфракрасными излучателями | Температура нагреваемой бетонной поверхности — не выше 80оС; защита от испарения воды из бетона – обязательна | 120 – 200 | Эффективно для стен и перекрытий |
Индукционный прогрев | Подъем температуры: со скоростью не более 150С/ч; Температура изотермы — не более 50оС; температура бетона на контакте с арматурой — не более 80оС; продолжительность прогрева: до достижения критической прочности | 100 – 150 | Густоармированные железобетонные конструкции линейного типа |
Конвективный прогрев (тепляки, электрокалориферы) | Камерный традиционный (общий) тепляк при температуре до 20оС. Локальный камерный тепляк. | 120 – 200 | Конструкции с показателем МП > 10 в замкнутых пространствах и температуре наружного воздуха выше минус 30оС |
Безообогревный с применением химических добавок | Ограничения по виду добавок: зависит от вида арматуры и требований к качеству поверхности | — | Ограничение по температуре наружного воздуха: до минус 15оС |
Паропрогрев (глухим или острым паром) | Подъем температуры: со скоростью не более 15оС/ч; Температура изотермы — не более 50оС; Продолжительность прогрева: до достижения критической прочности | 90 – 140 | Для любых конструкций, требующих обогрева |