Области проектирования и строительства строго регламентированы специальными положениями о бетоне и железобетоне, стандартами ГОСТ, в которых важное значение имеют класс и марка бетона. Соотношение класса и марки бетона определяет инженерные расчеты при возведении фундаментов, стен, архитектурных конструкций и сооружений, где за основу параметров взяты данные лабораторной проверки прочности с использованием бетонного кубика определенных размеров. В Великобритании и некоторых европейских странах прочность бетонных монолитов на сжатие проводят с помощью цилиндра.
Класс и марка характеризуют прочность бетона, но при разработке состава бетонной смеси следует учитывать морозостойкость (F), водонепроницаемость (W), другие показатели с учетом индивидуальных особенностей строительных проектов.
Прочность бетона — характеристика непостоянная, в течение определенного времени (при правильно подобранных пропорциях) растворная смесь затвердевает, набирает проектную силу. Минимальный срок отвердевания бетона — 28 дней, но процесс становления прочности по истечении этого срока не завершается: качество бетона со временем повышается, основание твердеет. Прочность бетона зависит от соотношения воды и цемента, идеальным составом считаются пропорции В/Ц = 0,3:0,5, если соотношение ниже, бетон теряет пластичность, при повышении пропорций воды уменьшается прочность, но становится выше подвижность раствора.
Качество материала
Под адгезией понимается то, насколько хорошо цементный камень скрепляется с частицами заполнителей. Кроме того, к основным качествам можно также отнести:
- морозостойкость;
- водонепроницаемость;
- прочность на сжатие и растяжение.
Когда материал находится в проектном возрасте, о его прочностных характеристиках можно судить по последним параметрам. Поэтому стоит отметить, что во время приготовления он получается неоднородным.
Здесь представлено соответствие марок и классов бетона
Колебания прочности снижаются при качественной подготовки смеси, а также при более высокой культуре строительства. Поэтому стоит запомнить, что изготовленный материал должен не только иметь средний заданный показатель, но и иметь равномерное его распределение по всей поверхности.
Определение класса
Учесть вышеописанные колебания можно в таком показателе, как класс, под которым понимается процентный показатель какого-либо свойства. К примеру, если указано, что материал имеет класс прочности 0,95, то в 95 случаях и 100 он будет иметь такой показатель.
Стоит отметить, что согласно ГОСТу, классификация бетона состоит из 18 основных классов показателей прочности на сжатие. При этом в начале название класса указывается В1, после чего идет числовое значение предела прочности, отображаемое в МПа.
Классификация изделий
Для более точного восприятия стоит привести пример. Итак, предположим, что перед нами классбетонаВ35. Это означает, что в 95 случаях из 100 он обеспечивает предел прочности на сжатие до 35 МПа.
Кроме того, существуют и другие классы прочности:
- индекс В,, обозначает осевое растяжение;
- индекс Btb отображает предел растяжения при изгибе.
Помните, что предел прочности на сжатие может в 20 раз превышать аналогичное значение прочности на растяжение. Поэтому при строительстве используется стальная арматура, которая повышает несущую способность материала, цена при этом увеличивается.
Таблица марок и классов бетона по прочности на сжатие
Определение марки
Как утверждает стандарт СЭВ 1406-78, главным показателем прочности изделий является именно их класс. Если же во время проектирования различных изделий не учитывался данный стандарт, их прочность описывается при помощи марки.
Под ней понимают какое-либо его свойство, выраженное в численной характеристике, для расчета которой используются средние показанные результаты образцов во время испытаний. Для обозначения марки используют значения, полученные во время испытаний:
Минимальное | Используется, если она определяется по таким показателям, как:· водонепроницаемость;· морозостойкость; · прочность. |
Максимальное | Применяется при определении бетона по средней плотности. |
Совет: знайте, что помощи марки нельзя отобразить колебания прочности по всему объему бетонного изделия.
Как производить перевод марок бетона в классы
Гидротехнический бетон — что это такое?
Строительные материалы для сооружений, которые постоянно контактируют с водой, должны отличаться высокой прочностью и влагостойкостью. Гидротехнический бетон обладает подходящими качествами и может противостоять разрушительному действию воды. Его параметры и состав определяет соотношение уровня и напора воды, размеров постройки и температурных условий.
Выделяют следующие разновидности гидротехнического материала:
- надводный – применяется для той части, которая находится над уровнем воды;
- подводный – для области под водой;
- бетон в зоне, где постоянно меняется уровень воды.
Бетон гидротехнический также бывает массивный и немассивный, для напорных и безнапорных конструкций. Отдельные требования для каждого вида прописаны в ГОСТ 26633–2012.
Технические характеристики
К основным свойствам материала относятся:
- морозостойкость;
- высокий уровень водонепроницаемости;
- прочность на сжатие, изгиб и растяжение.
По степени морозостойкости гидротехнический гидробетон делится на 5 марок: F50, F100, F150, F200, F300, где цифровое значение указывает количество циклов заморозок и оттаиваний материала до того, как он потеряет 25% прочности. Проверку проводят в специальных морозильных камерах. Величина данного параметра обязательно учитывается при строительстве зданий, на которые будут воздействовать низкие температуры. В отдельных случаях изготавливается морозостойкий бетон для гидротехнических сооружений марки F400, при его производстве в состав добавляют специальные примеси в определенных пропорциях.
По достижении материалом возраста 180 суток определяют уровень водонепроницаемости. Во время тестирования гидротехнический бетон не должен пропускать влагу. Такими свойствами обладают марки W2, W4, W6, W8. Это значит, что он выдерживает давление воды в 0,2, 0,4, 0,6, 0,8 МПа соответственно. Путем добавления специальных примесей-пластификаторов или изменения пропорций цемента можно увеличить плотность и водонепроницаемость до W12.
1. Прочность на сжатие.
Определяется посредством осевого сжатия куба размером 15х15х15 см. Существует несколько классов, которые обозначают буквой B и цифрой, указывающей количество циклов воздействия. К самым популярным относят B10–B40.
2. Прочность на изгиб и осевое растяжение.
Данный показатель важен, когда в конструкции не допускается образование трещин или работа обусловливается прочностью растянутого бетона. Основные классы: от Bt 0,4 до Bt 4 с шагом в 0,2. Прочность на изгиб отмечается показателями от Btb 0,4 до Btb 8 с таким же шагом. В некоторых случаях учитывают дополнительные параметры: стойкость к истиранию наносами и потоками воды, деформативность, небольшая усадка и др.
Состав гидробетона
Свойства и характеристики возводимых сооружений определяют компоненты, входящие в основу цемента:
1. пластифицированный – увеличивает устойчивость к воде и морозостойкость;
2. портландцемент – используют для построек с непостоянным уровнем воды;
3. гидрофобный – добавляют в подводные части конструкций;
4. пуццолановый или шлаковый – отличается высокой стойкостью к содержащим минералы и пресным водам;
5. сульфатостойкий – устойчив к агрессивному влиянию жестких вод.
Оптимальными наполнителями считаются кварцевые пески из природных месторождений, промытые от пылевидных частиц и глины, с плотностью 2 т/м3. Если размер зерна превышает 2 мм, уровень водостойкости падает. Можно использовать щебень или гравий, но они должны иметь высокие показатели плотности, лещадности, водо- и морозостойкости.
Сферы применения
Бетон для гидротехнических сооружений укладывается большими объемами в краткие сроки, это связано с особенностями его использования. Для регулирования температурных напряжений, которые возникают в процессе тепловыделения, в состав бетона добавляют измельченный лед, вводят пластифицирующие и минеральные добавки, а саму кладку охлаждают трубами с холодной водой. Объемные работы проводят с применением тяжелой техники. На выбор цемента для раствора влияют условия строительства и принцип функционирования строений.
Внешние зоны | Портландцемент с низким содержанием трехкальциевого алюмината |
Внутренние зоны и подводная часть | Пуццолановый или шлаковый цемент |
Надводная часть строения | Пластифицированный и гидрофобный цемент |
Гидротехнический водостойкий бетон используют при строительстве:
- мостов, туннелей метро;
- бассейнов, декоративных мини-прудов и водных парков развлечений;
- канализационных шахт;
- набережных зон;
- гидротехнических и очистных сооружений (причалов, дамб, волнорезов).
В индивидуальном порядке такой материал применяют для обустройства подвального помещения или возведения фундамента, в случае, когда на участке проходят подземные воды.
Стоимость основных видов
Нужную марку гидробетона получают посредством смешивания определенных пропорций цемента, воды, заполнителя (щебня, песка) и добавок. Чем выше соотношение первого компонента в смеси, тем выше марка. В России наиболее распространенными являются М300 и М400.
Приобретать товар лучше на проверенных заводах, имеющих хорошую репутацию. При покупке материала обязательно нужно уточнять все параметры, делать описание будущей конструкции. Стоимость определяется индивидуально для каждого в зависимости от требований к сооружению. Компания-производитель выясняет не только базовые характеристики, но и дополнительные, чтобы состав максимально соответствовал конкретной постройке. Не всегда позиции в прайс-листах подходят покупателю.
Марка | Класс бетона | Наполнитель гравийный щебень | Наполнитель гранитный щебень | Наполнитель песок |
М300 | В22,5 | 3400 | 3650 | 3150 |
М350 | В25 | 3430 | 3715 | 3200 |
М400 | В30 | 3500 | 3850 | 3300 |
В таблице указана примерная стоимость в рублях за кубометр гидротехнического бетона востребованных марок, которые можно купить в России.
Марка по прочности на сжатие
- Это одна из наиболее часто используемых характеристик бетонных конструкций.
- Инструкция требует для ее определения использовать образцы в виде куба, имеющих длину одной стороны 150 мм.
- Испытание проводится на протяжении условного проектного возраста – в большинстве случаев это 4 недели.
Совет: если берется серия из трех образцов, предел прочности рассчитывается по двум наибольшим из них. Для его выражения используются такие единицы – кгс/см2.
- Специалисты выделяют всего 17 марок тяжелого бетона в зависимости от его прочности на сжатие. Для их обозначения используется индекс «М», после которого указывается число. К примеру, марка М450 означает, что такой бетон гарантирует минимальный предел прочности на сжатие в 450 кгс/см2.
- Если же принимать во внимание прочность на осевое растяжение, то его марок гораздо больше – от Pt5 до Pt50 (прибавляя каждый раз по 5 кгс/см2). К примеру, марка бетона Pt30 будет означать, что он способен выдержать осевое растяжение до 30 кгс/см2.
- Для бетона, которые будет использоваться во время изготовления изгибаемых ж/б конструкций, существует также характеристика растяжения при изгибе, которая отображается при помощи индекса «Ptb».
Совет: не всегда следует проводить параллели между маркой бетона и его классом.
Класс поверхности бетона по СНиПу имеет 4 параметра
Классы и марки
Дело в том, что многое зависит от того, насколько материал является однородным. Для обозначения этой величины используется коэффициент вариации.
Чем ниже его числовое значение, тем большей однородностью обладает бетон. При снижении данного показателя, снижаются, соответственно, класс и марка материала. К примеру, М300, имеющий коэффициент вариации в 18%, получит класс В15, а вот при снижении до значения в 5%, класс повысится до В20.
Совет: результаты исследований доказывают, что во время изготовления бетонной смеси необходимо добиваться ее максимальной однородности.
На числовое значение прочности оказывают влияние множество факторов. Наибольшее — качество исходных компонентов, а также такой показатель, как пористость.
Изготовление раствора
Для набора прочности материала, изготовленного при помощи портландцемента, требуется значительное количество времени. Кроме того, для нормального протекания процесса требуется соблюдение определенных условий.
Морозостойкость
При помощи такого показателя, как марка бетона по морозостойкости можно определить, сколько циклов замораживания и оттаивания может выдержать 28-дневный материал, теряя при этом не более 15% показателя прочности на сжатие. Для обозначения такого показателя используется индекс F, а всего существует 11 классов.
Совет: чтобы бетон обладал хорошими морозостойкими свойствами, в его составе должен быть качественный портландцемент, а также его различные модификации – сульфатостойкий, гидрофобный и т.п.
При этом существуют определенные ограничения по процентному содержанию трехкальциевого алюмината в портландцементе.
К примеру, для:
- F200 допускается не более 7% такого вещества;
- F300 – до 5%, и т.д.
Крайне нежелательным является присутствие в цементе активных минеральных добавок, так как в результате их использования увеличивается потребность в воде. А вот снижение водопотребности достигается за счет применения поверхностно-активных веществ.
Работа с раствором в мороз
Совет: в сооружениях гидротехнического типа, обладающих маркой морозостойкости F 300, а также заполнителем диаметром не более 20 мм, объем вовлеченного воздуха должен находиться в пределах 2-4%
Вот небольшая инструкция, которой следует придерживаться:
- Для получения высококачественного морозостойкого бетона должно соблюдаться максимально точное соотношение всех компонентов.
- Их необходимо тщательно перемешать своими руками, получив максимально однородную смесь.
- После этого уплотнить.
- Обеспечить необходимые хорошие условия во время процесса затвердевания.
Совет:следите, чтобы не происходило тепловое расширение составляющих бетона, а значение воды и воздуха находились в допустимых пределах.
В ситуациях, когда осуществляется изготовление деталей, обладающих высокой степенью морозостойкости (F200 и выше), стоит помнить, что материал должен твердеть в условиях положительного значения температуры окружающей среды. Кроме того, его влажность должна сохраняться на протяжении около 10 дней.
Водопроницаемость
Марка по такому показателю, как водонепроницаемость определяется путем испытаний материала на ограниченную проницаемость во время одностороннего давления напора воды. Для ее обозначения используют индекс «W», после которого идет число.
Водопроницаемость материала
Оно обозначает максимальное давление (в кгс/см2), которое может выдержать исследуемый образец, диаметр и высота которого составляют 150 мм, во время определенных испытаний. К примеру, маркаW4 выдерживает напор воды в 4 кгс/см2. Всего существует 10 марок – от W2 до W20 (прибавляя по 2 кгс/см2).
Существуют методы, благодаря которым можно увеличить водонепроницаемость смеси во время ее приготовления, укладки и затвердевания бетона, а также методы, которые могут повысить такой показатель уже затвердевшего материала.
Контроль прочности бетона
Для того, чтобы бетонный раствор точно соответствовал указанным параметрам и выдерживал нагрузки, за его качеством следят еще на этапе приготовления. Прежде, чем готовить смесь, обязательно изучают рецепт, требования к компонентам и их пропорциям.
Основные критерии для контроля и проверки бетона:
- Соответствие используемого цемента указанным в рецепте маркам – так, для приготовления бетона М300 точно не подойдет цемент М100, даже при условии его большого объема. Чем выше число рядом с буквой М в маркировке цемента, тем более прочным получится раствор.
- Объем жидкости в растворе – чем больше воды в смеси, тем активнее влага испаряется в процессе высыхания и может провоцировать появление пустот, когда идет затвердевание.
- Качество и фракция наполнителей – шероховатые частицы неправильной формы обеспечивают наиболее крепкое сцепление ингредиентов в составе бетона, что в процессе твердения дает требуемый результат в виде высокой прочности. Грязный наполнитель может понизить характеристики бетона по прочности на растяжение и сжатие.
- Тщательность смешивания компонентов на всех стадиях приготовления раствора – по технологии раствор замешивается в исправной бетономешалке или на производстве в течение длительного времени.
- Квалификация работников – также играет важную роль, так как даже при условии применения качественной смеси В20, к примеру, прочность может быть снижена из-за неправильной укладки, отсутствия уплотнения (вибрация обеспечивает повышение прочности бетона на 30%).
- Условия застывания и эксплуатации – лучше всего, когда бетон застывает и приобретает твердость при температуре воздуха +15-25 градусов и высокой влажности. В таком случае можно говорить о точном соответствии монолита его марке – если был залит бетон В15, то и демонстрировать будет его технические характеристики.
Прочность бетона: таблица
Бетон по прочности на растяжение, при изгибе, воздействии других нагрузок демонстрирует определенные значения. Далеко не всегда они соответствуют указанным в ГОСТе и проектной документации, часто есть погрешность, которая может быть губительной для монолита и всей конструкции или же не оказывать никакого воздействия.
Виды прочности бетона (на сжатие, изгиб, растяжение и т.д.):
- Проектная
– та, что указывается в документах и предполагает значения при полной нагрузке на бетонную конструкцию. Считается в затвердевшем монолите, по истечении 28 дней после заливки.
- Нормированная
– значение, которое определяется по техническим условиям или ГОСТу (идеальное).
- Фактическая
– это среднее значение, полученное в результате выполненных испытаний.
- Требуемая
– минимально подходящий показатель для эксплуатации, который устанавливается в лаборатории производств и предприятий.
- Отпускная
– когда изделие уже можно отгружать потребителю.
- Распалубочная
– наблюдается в момент, когда бетонное изделие можно доставать из форм.
Виды прочности, касающиеся марки бетона и его качества: на сжатие и изгиб, осевое растяжение, а также передаточная прочность. Бетон напоминает камень – прочность на сжатие бетона обычно намного выше, чем на растяжение. Поэтому основной критерий прочности монолита – его способность выдерживать определенную нагрузку при сжатии. Это самый значимый и важный показатель.
Так, к примеру, показатели бетона В25 (класс прочности) и марки М350: средняя стойкость к сжатию до 350 кгс/м2 или до 25 МПа. Реальные значения обычно чуть ниже, так как на прочность оказывают влияние множество факторов. У бетона В30 будут соответствующие показатели и т.д.
Чтобы определить данные показатели, создают специальные кубы-образцы, дают им застыть, а затем отправляют под лабораторный пресс специальной конструкции. Давление постепенно увеличивают и фиксируют в момент, когда образец треснул или рассыпался.
Определяющее условие для присвоения марки и класса бетону – расчетная прочность на сжатие, которая определяется после полного схватывания и застывания монолита (28 суток занимает процесс).
Именно по прошествии 28 суток бетон достигает показателя расчетной/проектной прочности по марке. Прочность на сжатие – самый точный показатель механических свойств монолита, его стойкости к нагрузкам. Это своеобразная граница уже затвердевшего бетона к воздействующему на него механическому усилию в кгс/м2. Самая большая прочность у бетона М800/М900, самая низкая – у М15.
Прочность на изгиб повышается при увеличении индекса марки. Обычно показатели изгиба/растяжения ниже, чем нагрузочная способность. Молодой бетон демонстрирует значение в районе 1/20, старый – 1/8. Данный параметр учитывается на проектном этапе строительства. Способ определения: из бетона заливают брус 120х15х15 сантиметров, дают затвердеть, потом устанавливают на подпорки (расстояние между ними 1 метр), в центре помещают нагрузку, увеличивая ее постепенно, пока образец на разрушится.
Прочность высчитывается по формуле Rизг = 0,1PL/bh2, тут:
- L – расстояние между подпорками;
- Р – маса нагрузки и образца;
- Н, b, h – ширина/высота сечения бруса.
Прочность считается в Btb и обозначается цифрой в диапазоне 0.4-8.
Осевое растяжение в процессе проектирования учитывают редко. Этот параметр важен для определения способности монолита не покрываться трещинами при ощутимых перепадах влажности воздуха, температуры. Растяжение представляет собой некоторую составляющую, взятую от прочности на изгиб. Определяется сложно, часто образцы балок растягивают на специальном оборудовании. Актуально значение для бетона, который используется в сферах, исключающих возможность появления трещин.
Передаточная прочность – это нормируемое значение прочности бетонного монолита напряженных элементов при передаче на него силы натяжения армирующих элементов. Данный показатель предусматривается нормативными документами, ТУ для разных видов изделий. Обычно назначают минимум 70% проектной марки, многое зависит от свойств арматуры.
Прочность бетона на 7 и 28 сутки: ГОСТ, таблица
Бетоны бывают разными. Как правило, все виды по маркам и классам делят на легкие, обычные и тяжелые (часто последние две группы объединяют, так как все обычные бетоны считаются тяжелыми).
Основные группы бетонов по прочности:
- Легкие
– марки от М5 до М35 подходят для заливки ненесущих конструкций, от М50 до М75 идут на подготовительные работы до заливки, М100 и М150 актуальны для перемычек, конструктива, малоэтажного строительства.
- Обычные бетоны
– самые распространенные и часто применяемые в ремонтно-строительных работах: М200/М300 используют для выполнения фундаментов, отмосток, полов, стяжек, бордюров, подпорок, лестниц и т.д. М250 В20 демонстрирует прочность 262 кгс/м2 и давление 20 МПа. М350 и М400 применяют для монолитных, несущих конструкций многоэтажных зданий, чаш бассейнов.
- М450 и выше
– тяжелые бетоны, обладающие высокой прочностью и плотностью, используют для особых конструкций, разного типа военных объектов.
Таблица в МПа
Прочность бетона – самый важный показатель, который напрямую влияет на все остальные технические характеристики материала, сферу применения, способность выдерживать предполагаемые нагрузки. Поэтому в процессе выбора марки и класса стоит учитывать СНиП и ГОСТы, а при проверке материала на соответствие уделять внимание результатам исследования и соответствующим документам.
Классы и марки бетона.
В зависимости от назначения железобетонных конструкций и условий эксплуатации устанавливают показатели качества бетона, основными из которых являются:
- класс по прочности на осевое сжатие В; указывают в проектах во всех случаях, как основную характеристику;
для тяжелых бетонов Нормы устанавливают такой ряд классов — В7.5, В10, В12.5, В15, В20, В25, В30, В35, В40, В45, В50, В55, В60.
для мелкозернистых в зависимости от группы в диапазоне от В7.5 до В60.
для легких бетонов в зависимости от средней плотности В3.5 — В40.
- класс по прочности на осевое растяжение Вt, назначается в тех случаях, когда эта характеристика имеет главенствующее значение и контролируется на производстве;Вt0.8; Вt1.2; Вt1.6; Вt2; Вt2.4; Вt2.8; Вt3.2;
- марка по морозостойкости F; назначают для конструкций, подвергающихся в увлажненном состоянии действию попеременных замораживаний и оттаиваний; Характеризует число выдерживаемых бетоном циклов попеременного замораживания — оттаивания в насыщенном водой состоянии при условии, что снижение прочности составляет не более, чем 15%. Для тяжелого и мелкозернистого бетона — F50, F75, F100, F150, F200, F300, F400, F500. Для легкого бетона — F25 — F500. Для ячеистых — F15 — F100.
- марка по водонепроницаемости W; назначают для конструкций, к которым предъявляются требования ограниченной проницаемости (резервуары и т.п.); W2, W4, W6, W8, W10, W12. Она характеризует предельное давление воды (кг/см2), при котором не происходит ее просачивание через испытуемый образец в пределах требований Норм.
- марка по средней плотности D; назначают для конструкций, к которым кроме требований прочности предъявляются требования теплоизоляции, и контролируют на производстве. Тяжелый бетон от D2200 до D2500; легкий бетон от D800 до D2000; поризованный бетон от D800 до D1400.
Заданные класс и марку бетона получают соответствующим подбором состава бетонной смеси с последующим испытанием контрольных образцов.
Классом бетона по прочности на осевое сжатие В(МПа) называется временное сопротивление сжатию бетонных кубов с размером ребра 150 мм, испытанных в соответствии со стандартом в возрасте 28 суток при хранении в стандартных условиях (при температуре 202С и влажности не менее 60% ) и принятое с обеспеченностью 0.95.
Прочность — главное свойство бетона
Важнейшим свойством бетона является прочность. Лучше всего бетон сопротивляется сжатию. Поэтому конструкции проектируют таким образом, чтобы бетон воспринимал сжимающие нагрузки. И только в некоторых конструкциях учитывается прочность на растяжение или на растяжение при изгибе.
Прочность при сжатии. Прочность бетона при сжатии характеризуется классом или маркой (которые определяют в возрасте 28 суток). В зависимости от времени нагружения конструкций прочность бетона может определяться и в другом возрасте, например 3; 7; 60; 90; 180 суток.
В целях экономии цемента, полученные значения предела прочности не должны превышать предел прочности, соответствующей классу или марке, более чем на 15%.
Класс представляет собой гарантированную прочность бетона в МПа с обеспеченностью 0,95 и имеет следующие значения: Вb1; Вb1,5; Вb2; Вb2,5; Вb3,5; Вb5; Bb7,5; Вb10; Вb12,5; Вb15; Вb20; Вb25; Вb30; Вb35; Вb40; Вb50; Вb55; Вb60. Маркой называется нормируемое значение средней прочности бетона в кгс/см2 (МПах10).
Тяжелый бетон имеет следующие марки при сжатии: Мb50; Мb75; Мb100; Мb150; Мb200; Мb250; Мb300; Мb350; Мb400; Мb450; Мb500; Мb600; Мb700; Мb800.
Между классом бетона и его средней прочностью при коэффициенте вариации прочности бетона n = 0,135 и коэффициенте обеспеченности t = 0,95 существуют зависимости:
Вb = Rbх0,778, или Rb = Вb/ 0,778.
2.2. Арматура для железобетонных конструкций Назначение и виды арматуры.
Как было показано в лекции № 1, арматуру в железобетонных конструкциях устанавливают преимущественно для восприятия растягивающих усилий. Необходимое количество арматуры определяют расчетом элементов конструкций на нагрузки и воздействия.
Арматура, устанавливаемая по расчету, называется рабочей;устанавливаемая по конструктивным и технологическим соображениям -монтажной. Монтажная арматура обеспечивает проектное положение рабочей арматуры в конструкции и более равномерного распределения усилий между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчетом усилия от усадки бетона, температурных перепадов и т.д.
Рабочую и монтажную арматуру объединяют в арматурные изделия- сварные и вязаные сетки и каркасы, которые размещают в железобетонных конструкциях в соответствии с характером их работы под нагрузкой.
Арматура классифицирована по 4 признакам:
- в зависимости от технологии изготовления — стержневая и проволочная. Под стержневой подразумевают арматуру любого диаметра в пределах 6 40мм, причем независимо от того, как она поставляется промышленностью — в прутках (D>12мм, длина до 13м) или в мотках (массой до 1300кг).
- в зависимости от способа последующего упрочнения — горячекатанная арматура может быть термически упрочненной, или упрочненной в холодном состоянии — вытяжкой, волочением.
- По форме поверхности — бывает периодического профиля или гладкой. Выступы в виде ребер на поверхности стержневой арматуры периодического профиля, рифы или вмятины на поверхности проволочной арматуры значительно улучшают сцепление с бетоном.
- по способу применения — напрягаемая и ненапрягаемая арматура.
Методы и испытания бетона на прочность
Для определения марки и класса бетона используют разнообразные методы – все они относятся к категориям разрушающих и неразрушающих. Первая группа предполагает проведение испытаний в условиях лаборатории посредством механического воздействия на образцы, которые были залиты из контрольной смеси и полностью выстояны в указанные сроки.
Для проведения исследований используют специальный пресс, который сжимает опытные образцы и демонстрирует предел прочности при сжатии. Разрушение – наиболее верный и точный метод исследования бетона на прочность таких видов, как сжатие, изгиб, растяжение и т.д.
Основные неразрушающие методы исследований:
- Воздействие ударом.
- Разрушение частичное.
- Исследование с использованием ультразвука.
Ударное воздействие может быть разным – самым примитивным считается ударный импульс, который фиксирует динамическое воздействие в энергетическом эквиваленте. Упругий отскок определяет параметры твердости монолита в момент отскока бойка ударной установки.
Также используется метод пластической деформации, который предполагает обработку исследуемого участка особой аппаратурой, которая оставляет на монолите отпечатки определенной глубины (по ним и определяют степень прочности).
Частичное разрушение также может быть разным – скол, отрыв и комбинация данных способов. Если для испытаний используется метод скола, то ребро изделия подвергают особому скользящему воздействию для откалывания части и определения прочности. Отрыв предполагает использование специального клеящего состава, которым на поверхности крепят металлический диск и потом отрывают. При комбинировании данных способов анкерное устройство крепят на монолит, а потом отрывают.
Преимущества классификации бетона
Обозначение степени качества бетона классами и марками существует и функционирует плотно друг с другом. Обе классификации основываются на одном и том же параметре – прочности бетона.
Для замешивания различных видов бетона существует свой расчет всех составляющих готового раствора. Соблюдение пропорций не может гарантировать точное соответствие заявленным характеристикам устойчивости. Данная характеристика зависит также от качества используемых ингредиентов: песка, наполнителя, добавок и воды. Важным моментом, который обязательно должен учитываться, являются условия заливки цементного раствора и качество его схватывания.
Состав одной и той же марки может существенно различаться по своей прочности, поэтому марка заключает информацию об усредненной величине. Для того чтобы точнее определить этот параметр, было разработано подразделения на классы бетона. Данная классификация позволяет получить значение гарантированной прочности материала.
При строительных расчетах класс даст более достоверную информацию, поэтому в нормативных документах указывается именно этот параметр. При совершении покупки в строительном магазине используется классификация бетонов по марке.
Соотношение классов с марками
Каждый класс соотносится с определенной маркой. Таблица соответствий позволяет с легкостью перевести одно наименование в другое.
Класс | Марка |
B3,5 | М50 |
B5 | М75 |
B7,5 | М100 |
B10 | М150 |
B12,5 | М150 |
B15 | М200 |
B20 | М250 |
B22,5 | М300 |
B25 | М350 |
B27,5 | М350 |
B30 | М400 |
B35 | М450 |
B40 | М550 |
B45 | М600 |
B50 | М700 |
B55 | М750 |
B60 | М800 |
B65 | М900 |
B70 | М900 |
B75 | М1000 |
B80 | М1000 |
Соответствие классов с маркировкой по морозостойкости, влагонепроницаемости
Определение морозостойкости при выборе вида бетона может сыграть основополагающую роль. Стабильность к резким перепадам температуры считается значимым условием качества продукта. Особенно важен данный фактор в условиях северного климата.
Диапазон морозостойкости представляет шкалу от F50 до F1000. Цифра в маркировке имеет значение максимального количества циклов замораживания и оттаивания, которые может позволить материал без изменения своей структуры и качества.
Влагонепроницаемость – еще одно важное свойство, характеризующее цементно-песчаный состав. Маркировка обозначается от W2 до W20. Число в названии вида указывает на максимально допустимое давление воды. Данный показатель прямо пропорционален стоимости материала.
Сводная таблица позволяет определить соответствие класса бетона и марок по морозостойкости и водонепроницаемости. Чем выше класс прочности, тем устойчивее состав к холоду и влаге.
Класс бетона | Морозостойкость | Влагонепроницаемость |
В-7,5 | F50 | W2 |
В-12,5 | F50 | W2 |
В-15 | F100 | W4 |
В-20 | F100 | W4 |
В-22,5 | F200 | W6 |
В-25 | F200 | W8 |
В-30 | F300 | W10 |
В-35 | F200-F300 | W8-W14 |
В-40 | F200-F300 | W10-W16 |
В-45 | F100-F300 | W12-W18 |
Сфера применения
Для каждого типа строительных работ используется свой класс бетонного раствора. Чем выше указанное значение материала, тем лучше его эксплуатационные качества. Рассмотрим самые популярные виды.
В30
Бетон имеет большую плотность, поэтому его применение целесообразно в тех конструкциях, на которые осуществляется большая нагрузка. Готовый состав используется для строительства мостов, подземных и гидротехнических сооружений, хранилищ в банках и других элементов, к которым предъявляются специальные требования к прочности и качеству.
В25 и В27,5
Класс В25 представляет собой цементно-песчаный состав с высокими физическими и техническими характеристиками. Он широко применяется для устройства свай, монолитных стен и фундаментов, перекрытий, различных колонн и балок. Такой бетон используют для заливки основы под чаши бассейнов, на которые осуществляется большая нагрузка. По той же причине железобетонные кольца производятся из класса В27,5. Данные конструкции часто выбирают для обустройства колодцев или канализаций, которые находятся под сильным давлением.
В22,5
Бетонный раствор класса В22,5 отлично подходит для заливки монолитных стен и перекрытий, лестничных конструкций, установки заборов, придомовых дорожек и площадок. Следует остановить свой выбор на таком составе в том случае, если вам необходимо подготовить и уплотнить грунт под ленточный фундамент.
В12,5 и В15
Классы В12,5 и В15 используются для работ по выравниванию поверхностей и выполнении бетонных стен, напольных покрытий, фундаментов, стяжек, бетонировании столбов, площадок и дорожек. Такой состав чаще всего применяется для строительства и благоустройства частных домов.
В7,5
Раствор класса В 7,5 иначе называют «легкий бетон». Он получил свое признание в области проведения работ по подготовке к дальнейшей отделке помещений, по обустройству грунта под фундамент или для благоустройства территории рядом с домом. Материал часто применяется в качестве укладки цементно-песчаной подушки под дорожное полотно или для имитации природного камня.
Классификация по степени растяжения
Существует дополнительная классификация материала по прочности: по растяжению в направлении оси и по максимальному пределу на растягивание при изгибе материала. Данный показатель важен при строительных работах в тяжелых условиях, при которых недопустимы внешние повреждения поверхности.
Обычно бетонные изделия не предназначены для растягивания. Но, тем не менее, разграничение классов по этому параметру имеет огромное значение. Учитывать степень растяжения материала необходимо еще на этапе проектирования для того, чтобы правильно оценить нагрузку на объект.
Это позволяет продлить срок эксплуатации бетонной конструкции и избежать существенных нарушений стандартов. Несоблюдение параметров создает большие риски для возникновения сколов и трещин.
Осевое растяжение
Параметр прочности материала на растяжение в осевой проекции очень важен при монтаже объектов и конструкций, устройство которых категорически не допускает появление трещин или других повреждений. Это могут быть бассейны, фонтаны и другие сооружения, находящиеся под воздействием воды. Для строительства плотин на гидростанциях данный индекс прочности является самым объективным параметром.
Бетонные составы обозначаются латинскими буквами Вt. Они подразделены на классы по устойчивости на растяжение: Вt0,8; Bt1,2; Bt1,6; Вt2; Bt2,4; Вt2,8; Вt3,2. Чем выше индекс маркировки, тем выше характеристика прочности.
Растяжение на изгиб
Данная классификация цементно-песчаных растворов используется при выборе материала для укладки дорожного полотна из бетона, при устройстве посадочных полос аэропортов. Подобные строительные работы требуют от него высокого уровня прочности на растяжение.
Обозначение классов указывается при помощи сокращения Вbt. Классификация имеет 19 уровней: Вbt0,4; Вbt0,8; Вbt1,2; Bbt1,6; Вbt2,0; Вtb2,4; Вbt2,8; Вbt3,2; Вbt3,6; Вbt4,0; Bbt4,4; Вbt4,8; Вbt5,2; Вbt5,6; Вbt6,0; Вbt6,4; Вbt6,8; Вbt7,2; Вbt8.
Выделение классов бетонного раствора по различным признакам (прочности, устойчивости при растяжении в осевой проекции и при изгибе) позволяет провести оценку изделия со всех сторон. Это дает возможность подобрать необходимый материал по качеству, который будет отвечать всем требованиям сферы его применения.
Прочность бетона при изгибе и осевом растяжении
Предел прочности при изгибе имеет большое значение для конструкций, подвергающихся изгибающим усилиям (балки, прогоны, панели перекрытий). Эта характеристика достаточно хорошо изучена для бетонов нормального твердения.
Влияние автоклавной обработки на предел прочности при изгибе проверялось нами на бетоне состава 1:2, 34:3,75 с В/Ц = 0,55 при расходе цемента 320 кг/м3. Бетон приготовлялся пластичной консистенции удобоукладываемостью 20 сек. Цементы применялись различные. Минералогический состав их представлен в табл. 1. Часть клинкера (25, 40, 50 и 60%) при помоле цемента замещалась кварцевым песком. Цемент размалывался до удельной поверхности 3000 см2/г.
Бетонные образцы размером 4x4x16 см, изготовленные на этих цементах, подвергались автоклавной обработке под давлением пара 9, 13, 17 и 21 ат в течение 8 ч и испытывались через одни сутки после запаривания. Результаты испытаний образцов на изгиб представлены на рис. 70. Минералогический состав клинкера не оказывает существенного влияния на прочность бетона автоклавного твердения при изгибе. Образцы на алитовом, мало- и среднеалюминатном цементах приобрели прочность при изгибе всего лишь на 11—13% больше, чем образцы на среднеалитовом высокоалюминатном цементе.
Добавка песка в количестве 25% повышает предел прочности бетона при изгибе на различных видах цемента. При добавлении 40% песка прочность образцов на алитовых цементах равноценна прочности бетона, полученной на чистых цементах. При больших добавках песка прочность при изгибе понижается более интенсивно у бетонов на белитовых цементах.
По данным Рейнсдорфа, при введении в портландцемент молотого песка соотношение между прочностью при изгибе и прочностью при сжатии бетона автоклавного твердения увеличивается приблизительно от 1:7,5 до 1:10,2.
Существенным фактором, влияющим на предел прочности бетона автоклавного твердения при изгибе, является давление пара при запаривании. Из рис. 70 видно, что при увеличении давления пара с 9 до 13 ат прочность при изгибе несколько увеличивается, а при дальнейшем повышении давления пара значительно снижается.
Опыты по запариванию бетона при 21 ат в течение различного времени (рис. 71) показали, что интенсивное нарастание прочности наблюдается в первые часы запаривания. Максимальное значение прочности при изгибе достигается при запаривании в течение 4—6 ч, однако абсолютное ее значение на 10—20% ниже полученного при запаривании в течение 8 ч при 9 ат. Увеличение времени запаривания при 21 ат сверх 6 ч понижает прочность бетона при изгибе. Следует отметить, что эти результаты действительны лишь для данных условий опыта. С изменением тонкости помола цемента и состава бетона оптимальное время запаривания при 21 ат может изменяться.
На рис. 72 показана кривая зависимости предела прочности при изгибе от предела прочности при сжатии для бетона, запаренного при различном давлении пара; для сравнения приведены данные для бетона, твердевшего 28 суток в нормальных условиях. При одном и том же значении прочности на сжатие бетон автоклавного твердения имеет меньшую прочность на изгиб, чем бетон нормального твердения. Повышение давления пара при автоклавной обработке сверх 13 ат в еще большей степени снижает прочность на изгиб, а поэтому не рекомендуется. Меньшее значение прочности бетона на изгиб при одной и той же
прочности при сжатии свидетельствует о повышенной хрупкости бетона автоклавного твердения, увеличивающейся по мере роста температуры запаривания.
В НИИЖБе канд. техн. наук В.С. Булгаков и инж. Л.П. Гиренко исследовали физико-механические свойства высокопрочных бетонов нормального и автоклавного твердения. Запаривание образцов из бетона, данные о котором приведены в табл. 28, производилось через 30 ч после изготовления по режиму 3+8+3 ч при 9 ат. Образцы испытывались через 14 суток после запаривания.
Предел прочности на растяжение при изгибе определялся в соответствии с ГОСТ 10180—62 на балках размером 15х15х55 см. Для замера деформаций на нижней и боковых гранях образца перед испытанием наклеивались тензодатчики (в зоне максимальных моментов). Нагрузка давалась двумя грузами ступенями, равными 0,1 разрушающей. Предел прочности бетона на растяжение при изгибе вычислялся по формуле В соответствии с ГОСТ 10180—62 коэффициент К в этой формуле для балок размером 15х15×55 см принят равным 1. Разрушение балок происходило в зоне максимальных моментов.
С ростом прочности при сжатии прочность на растяжение при изгибе также увеличивается. При этом отношение Rр*и/Rсж для бетона автоклавного твердения лишь незначительно ниже, чем для бетона нормального твердения.
Прочность бетона при осевом растяжении определялась путем испытания призматических образцов с уширениями на концах.
Рабочая часть образца была размером 10х10х40 см. Чтобы исключить разрушение образцов в оголовках, в них были поставлены арматурные каркасы. Образец имел плавный переход от уширения к рабочему сечению. Оголовки имели отверстия, образованные трубками, закладывавшимися при изготовлении образца. В эти отверстия при испытании вставлялся штырь захватного приспособления.
Перед испытанием на боковые поверхности образца наклеивались тензодатчики для определения деформаций при растяжении. Образец укреплялся в прессе с помощью захватов. Нагрузка на образец прикладывалась также ступенями, равными 0,1 разрушающей. Результаты испытания образцов при осевом растяжении приведены в табл. 29.
Как видно из таблицы, прочность на осевое растяжение с ростом марки бетона увеличивается незначительно. При этом отношение прочности при осевом растяжении к прочности при сжатии бетона высоких марок практически одинаковое.
Учитывая то обстоятельство, что при автоклавной обработке прочность бетона при сжатии более высокая, чем у бетона нормального твердения, получаемые при этом результаты испытаний прочности бетона при изгибе можно признать удовлетворительными. Ограничение области применения бетонных и железобетонных изделий автоклавного твердения возможно по другим показателям, а не по пределу сопротивления бетона изгибу или осевому растяжению.
Проф. Г.Д. Цискрели, исследовавший влияние условий влажностного состояния бетона на его физико-механические свойства, установил, что увлажнение повышает со временем прочность на растяжение тяжелых бетонов, изготовленных из подвижных смесей.