Долговечность бетонных и железобетонных конструкций


Бетонные конструкции представляют значительную часть строительных сооружений, надежность которых зависит от совокупности прочностных качеств материала. Долговечность бетона характеризует его способность сохранять свою механическую прочность в течение всего периода эксплуатации. Объективная оценка факторов надежности бетона позволяет исключить негативные критерии, установить причины разрушения и определить срок службы одного из основных строительных материалов.

Внешние факторы

Долговечность бетона зависит от воздействия на его поверхность целого ряда внешних факторов, в числе которых влажность и атмосферные осадки, контакт с агрессивными органическими и минеральными средами, морскими и грунтовыми водами, воздействие солнечного света и перепада температур, наличие и величина испытываемых динамических и статических нагрузок. Уровень оказываемого разрушающего воздействия зависит от химического состава агрессивных сред, амплитуды температурного воздействия, величины физических сил, оказывающих механическое воздействие. В зависимости от природы возникновения коррозия бетона, приводящая к его разрушению, может носить электрохимический, химический, физический, микробиологический или физико-химический характер. В большинстве случаев имеет место комплексное воздействие внешних разрушающих факторов, определяющих степень долговечности материала.

Коэффициент водонепроницаемости

Водонепроницаемость бетона — это его способность не пропускать через себя воду под давлением, она неразрывно связана с морозостойкостью. Обозначается литерой W с коэффициентом от 1 до 20. Для увеличения водонепроницаемости в бетон на заводах вводят уплотняющие и гидрофобизирующие добавки или применяют в затворении смеси гидрофобный или напрягающий цемент.

Бетон с высоким коэффициентом водонепроницаемости позволяет без дополнительной гидроизоляции строительства подвалов в местах с высоким уровнем грунтовых вод, в том случае, если заливка стен и пола произведена профессионально без швов и перерывов. К тому же такой бетон долговечен — коэффициент морозостойкости у них высок, что идеально подходит для незащищенных конструкций, таких как бетонные дорожки, отмостки, ленты заборов, а так же, для свайных фундаментов на влагонасыщенных грунтах. Однако такой бетон недешев из-за высоких марок (с высоким содержанием цемента), особые условия так же требуются для того чтобы доставить и уложить его на объекте из-за быстрого времени схватывания.

Напоследок еще раз о том, от чего бетон может испортиться:

Во-первых, ни в коем случае не разбавляйте бетон водой при укладке. Жидкий бетон укладывается проще, чем твердый, но, нарушив водоцементное соотношение, Вы тем самым существенно снизите его марку, уменьшите его прочность.

Во-вторых, соблюдайте все необходимые условия перевозки бетона в миксере, время разгрузки, учитывайте погоду.

В-третьих, качественно уплотняйте смесь, оставленные из-за отсутствия вибрировании при укладке пустоты в бетоне, снижают марку бетона.

Нагрев и охлаждение

Одним из основных деструктивных факторов является температурное воздействие, которое в результате охлаждения и нагрева приводит к сужению и расширению материала. Несмотря на минимальный коэффициент расширения бетона, капиллярно-пористая структура строительного материала создает предпосылки для коррозионных процессов, которые возникают в результате циклов замораживания и оттаивания. Фазовая кристаллизация воды и солей приводит к механическим повреждениям и объемным изменениям структуры. Тепловое воздействие служит катализатором для движения внутри материала потоков тепла, влаги, пара или газов. В конечном счете, уровень воздействия, который оказывает нагрев и охлаждение зависит от вида бетона, соотношения и рецептуры смеси, качества примененных при изготовлении заполнителей. Важнейшим критерием качества и долговечности бетона является его морозостойкость, определяющая число допустимых циклов заморозки и оттаивания без потери прочности. С целью повышения морозостойкости бетона находят применение специальные воздухововлекающие добавки.

Обычные бетоны, выполненные на основе портандцементов, предназначены для использования при температуре не более 200° С. В случае превышения этого значения материал теряет свои прочностные качества из-за выпаривания кристаллизационной влаги, приводящего к нарушению структуры. При формировании жароупорных бетонов используются микронаполнители в виде туфа, трепела, шамота и прочих добавок.

Долговечность железобетона – теория и практика

А.Б.Тринкер, д.т.н.

В статье «За высотою высота» (13.06.2016 агентство новостей АНСБ, журнал «Строительный бизнес») д.т.н. В.И. Травуш написал : „В 70-е 80-е годы в России высотное строительство практически не велось – это абсолютная историческая неправда.

В статье «Итоги 2-го международного симпозиума по долговечности и устойчивому развитию железобетона (DSCS-2018)» д.т.н. В.Р. Фаликман [12] : на симпозиуме выступали учёные почти всех стран Мира ( Nanobuild.ru № 4/2018, том.10, стр.162-164 ) — ни слова не сказано про автора Вечного Бетона, который не замерзает при минус 50 градусов и в огне не горит при 1000 градусов Цельсия, Вечный Бетон был впервые в Мире применён более 55 лет назад в Москве на возведении Останкинской башни.

В 1970 – 1980 годы трестом Спецжелезобетонстрой Минмонтажспецстроя СССР в котором работал к.т.н. Б.Д.Тринкер (ВНИПИ Теплопроект) и В.О. Гидроспецстрой Минэнерго СССР, где работал инж.А.Б.Тринкер, были построены несколько десятков самых высотных в Мире сооружений, в том числе: железобетонные башенные градирни высотой от 90 до 150 метров и дымовые трубы высотой от 250 до 420 метров на ТЭЦ, ГРЭС, АЭС, грануляционные башни на химических комбинатах СССР, спецсооружения [1-10].

В 2010 году в Дубаи (ОАЭ) на берегу круглогодичного и вечно тёплого Персидского залива был построен самый высокий в мире небоскрёб «Башня Халифа» ( Burj Khalifain Dubai, U.A.E. ), полной высотой 828 метров. Проектировало американское архитектурное бюро, строила южнокорейская фирма [11]. Общий срок строительства с 2004 по 2010 годы. В отчёте была разработана особая марка бетона, которая выдерживает температуру до +50°C. Бетонную смесь укладывали только ночью, в бетонную смесь добавляли лёд», «строительство Бурдж-Халифа заняло 6 лет, чтобы закончить, используя 22 миллиона человеко-часов. Были наняты более чем 30 локальных подрядчиков и 12 000 рабочих из 100 стран. Проект был действительно глобален по своей природе».

Можно кратко констатировать — нашли чем хвастать, и задать вопрос : «где вы получили лёд при 50 градусах жары, и не очень дорогая ваша «технология»?». Надо сказать: самый «холодный» период в январе-феврале в Дубаи температура постоянная и не бывает ниже плюс 16-20 градусов.

Применение даже последних «достижений» — ХХ1 века в строительстве (суперпластификаторы «очередного» придуманного поколения, лёд в бетонной смеси, бетонирование только ночью и только 2 раза в неделю ) и логистики (миксеры, бетононасосы) не гарантировало темпы (сроки ) строительства и качество бетона.

Отечественные строители имеют 70-летний, значительно более богатый и многосторонний опыт производства работ в условиях жаркого и сухого климата, при солнечной радиации и штормовых ветрах, в настоящем катастрофическом (!) климате. Выбор материалов, проектирование и подборы составов любого бетона для любого климата в Мире, то есть от минус 50 градусов ( например в Якутске ) до плюс 55 градусов цельсия и при любой влажности, производят строительные лаборатории в течении 60 лет в соответствии с универсальным «Руководством по проектированию и подбору составов гидротехнического и обычного бетона» 1957 года, разработанным Учёным к.т.н. Б.Д.Тринкером ( фото 1 ) :

Фото 1 Б.Д.Тринкер родился в 1914, с ОТЛИЧИЕМ защитил диплом в МХТУ им.Д.И.Менделеева в 1939, поступил в Аспирантуру, в ноябре 1939 призван на фронт, воевал на Карельском и 3-Украинском фронтах, в декабре 1945 демобилизован, в 1955 защитил свой единственный диссер, в 1963-1967 построил самое Первое в человеческой истории сооружение выше 500 метров из железобетона в Останкино. Фото 1945 года : Б.Д.Тринкер капитан комроты в навсегда освобождённой Вене.

Документы, разработанные Б.Д.Тринкером имеют самые главные принципы : простота, доступность, ускоренная за 1-2 дня (!) методика всех расчётов, отсутствие сложных формул, точность и планируемость результатов, то есть проектируемого сверх-прочного и сверх-долговечного Бетона. Теоретические разработки данного «Руководства» были сделаны и практически подтверждены в период подготовки и строительства первых высотных сооружений из железобетона (фото 2), подвергающихся кислотной агрессии и воздействию значительного градиента знако-переменных температур.

Фото 2 Строительство первых высотных дымовых труб из железобетона на ТЭЦ и ГРЭС, заведующий лабораторией высотных и специальных сооружений Минмонтажспецстроя СССР к.т.н. Б.Д.Тринкер на своей Высоте, 1957 год.

По определению жаркий и сухой климат : при температуре „выше плюс 25 градусов цельсия и относительной влажности менее 50%“ — это требует многих специальных дополнительных мероприятий в технологии.

В ОАЭ климат жаркий морской но не сухой, температура достигает 50 градусов, но зато относительная влажность воздуха в пределах 90%, что не способствует быстрому высыханию твердеющего бетона !

Наоборот : в Казахстанском Экибастузе кроме высокой температуры плюс 55 градусов в тени, одновременно относительная влажность воздуха составляет 25%, что как насосом вытягивает всю влагу из твердеющего бетона. В таком катастрофическом климате твердеющий бетон без защиты рассыпается в прах.

В период с 1977 по 1979 годы в Казахстане на Экибастузской ГРЭС № 1 ( мощностью 4 млн. квт. ) были построены автором статьи первые самые высотные в Азии инженерные сооружения дымовые трубы 300 и 330 метров высотой, из железобетона с проектными марками М400 ( класс В30 ), F300 и W8 ( фото 3 ). Основные параметры трубы : наружный диаметр у основания = 32 метра, наружный диаметр верхнего створа = 12 метров, толщина стенки изменяется от 0,8 м. у основания до 0,3 м. в верхней части. Расчётная высокая сейсмичность = 9 баллов вынудила использовать усиленную арматуру периодического профиля диаметром 38 мм, что привело к необходимости применять литую смесь с подвижностью 24-26 см осадки стандартного конуса. Необходимо отметить : единственный от всей науки СССР на строительстве работал инженер Минэнерго СССР А.Б.Тринкер, построил мощный БСУ снабжавший высокомарочным бетоном все объекты.

Фото 3 Экибастузская ГРЭС № 1 построенная в 1977-1979 годах в резко континентальном и катастрофическом климате Казахстана при температуре летом плюс 55 градусов цельсия и относительной влажности около 25%, зимой при минус 40 градусов Цельсия, дымовые трубы высотой 300 и 330 метров. Автор проекта и технологии к.т.н. Б.Д.Тринкер, автор БСУ и Бетона инженер А.Б.Тринкер.

В 1979-1980 годах на Киришской ГРЭС была возведена 330-метровая дымовая труба с применением суперпластификатора ЛТМ, бетононасоса, скользящей опалубки, с рекордными скоростями скольжения в зимних условиях 3-5 метров в сутки.

С 1976 года, по новой конвейерной технологии начали возводить монолитные без рабочих швов бетонирования тонкостенные осободолговечные железобетонные градирни высотой 90 метров на ТЭЦ с Суперпластификатором ЛТМ (ТУ-480-2-4) из литой бетонной смеси (24-26 см. О.К.) в скользящей опалубке с применением бетононасоса, рассчитанные на 100 лет работы в экстремальных, всепогодных температурно-влажностных условиях, при температурах: внутри водяной конденсат плюс 40-60 градусов, снаружи по погоде от минус 50 до плюс 50 градусов Цельсия (фото 4, 5).

Фото 4 Уникальное монолитное безшовное сооружение, градирня на ТЭЦ-25 Мосэнерго, 1977 год.

Фото 5. Главный строитель инженер Минэнерго СССР Александр Тринкер (справа) и директор строящейся ТЭЦ-25 Мосэнерго в Очаково, 1977.

Проект и технология : к.т.н. Б.Д.Тринкер ( 1914 – 2004 ) заведующий лабораторией высотных и специальных сооружений ВНИПИ Теплопроект Минмонтажспецстроя СССР.

Строительство : с 1976 по 1983 годы, работая в В.О. «Гидроспецстрой» Минэнерго СССР, инж.А.Б.Тринкер построил типовые 90-метровые градирни на Московских ТЭЦ — 20, — 21, — 22, — 23, — 25, — 26, в Ленинграде ( Северная и Южная ТЭЦ ), Минске и Гомеле ( Белоруссия ), Киеве ТЭЦ-6 ( Украина ), и т.д., скорость возведения оболочек градирен составляла от 3 до 6 метров в сутки, в отличие от предыдущей технологии в переставной опалубки = 1 метр за 2 суток при благопроятных условиях.

— В 1981 году за конвейерную скоростную технологию возведения башенных 90-метровых градирен на ТЭЦ ( надёжное обеспечение электроэнергией страны ) была выдана Премия Совета Министров СССР, заголовок в газете : «за особо выдающиеся проекты и строительство», 19 приспособленцев получили по незаработанной золотой медали и по 650 рублей.

— В 1987 году за технологию модифицирования лигносульфонатов ЛТМ по ТУ-2-4-86 и успешное применение миллионов кубометров долговечного и высокопрочного бетона была выдана Премия Совета Министров СССР, получили 20 приспособленцев. Настоящие учёные создавшие и применившие технологии, премии не получили!

В 1985 году на Экибастузской ГРЭС № 2 была построена самая высокая в Мире дымовая труба высотой 420 метров ( фото 6 ), участник международной „Guinness world records“. Диаметр трубы у основания 44 метра, на отметке 420 м. = 14,2 метра, 35 000 м3 бетона. Это было уникальное сооружение ХХ века, по новой технологии, из бетона нового поколения, с одновременным (!) монтажём наружного и внутренего стволов, внутренний ствол из лёгкого бетона с полимерной добавкой АЦФ, который надёжно выдерживает кислотную коррозию конденсата от дымовых газов. Разработка технологии и проект к.т.н. Б.Д.Тринкер.

Фото 6. Самая высокая в Мире железобетонная дымовая труба возведённая на Экибастузской ГРЭС № 2 в 1985 году, 420 метров. Участник «Guinness world records». Автор проекта и новой технологии к.т.н. Б.Д.Тринкер, автор Бетона и конструктор БСУ в Экибастузе инж. А.Б.Тринкер.

Сравнивая с «Башней Халифа», — каждую дымовую трубу строили : генподрядчик трест Экибастузэнергострой Минэнерго СССР ( владелец БСУ и складского хозяйства ) и субподрядчик, — трубу № 1 В.О. «Гидроспецстрой» Минэнерго СССР, а трубу № 2 трест «Спецжелезобетонстрой» Минмонтажспецстроя СССР. В бригадах было по 200 рабочих на каждой трубе, строительство каждой трубы происходило около двух лет, причём труба № 1 с последующим монтажём второго внутреннего ствола из кремнебетонных панелей, труба № 2 с одновременным бетонированием внутреннего ствола.

В отличие от жилых небоскрёбов построенных в ХХ1 веке ( фото 7 ), дымовые трубы должны долго и без ремонта работать в высокоагрессивных средах : конденсатах разных кислот, выделяющихся из продуктов сгорания топлива на ТЭЦ и ГРЭС. Бетон дымовых труб дополнительно должен быть коррозионно-стойким в высоко-агрессивных кислых средах, то есть несравнимо с условиями службы любых небоскрёбов в жилых городах, которые подвержены только лёгкой атмосферной коррозии.

Фото 7. Самые высокие небоскрёбы в городах, на первом месте Бурдж Халифа, построенное в Дубаи (ОАЭ) в 2010 году в тёплом и благоприятном для бетонирования климате, высотой 828 метров.

Резко континентальный климат Казахстана показал серьёзные проблемы в науке и строительстве. Температуры в зимний период достигали минус 40 градусов цельсия со штормовыми ветрами от которого падали башенные краны и стены главного корпуса, в летние месяцы температура воздуха достигала 55 градусов в тени, при относительной влажности воздуха 25% ( а в Дубае-ОАЭ = 90% ! ). Причём, в течении одних суток колебания воздуха достигали 30-40 градусов цельсия. Например : в июле 1978 года в 7-00 час утра, когда производственные бригады отправлялись в автобусах от городского общежития на стройку, температура воздуха была 15-20 градусов, в 12 час дня температура достигала 40 градусов, в 15 час температура достигала 55 градусов, потом начинался медленный спад, и в момент возвращения бригад в город в 20-00 час ( 12-часовые смены ), температура была 30-35 градусов, а ночью воздух «остывал» до 15-20 градусов цельсия.

В жарком и сухом климате твердеющий бетон подвергается следующим вредным воздействиям : солнечная радиация и ветер форсируют испарение влаги из бетона сооружений имеющих большую открытую поверхность, это приводит к внутреннему массо- и теплопереносу, и к переменным термическим напряжениям в их стенках. Необходимость получения высокой подвижности литых бетонных смесей повышает расход цемента, что вызывает усадку при переменном по периметру сооружения нагреве от солнечной радиации. Трещины в бетоне сооружений возникают под влияникм усадки, от температурных и усадочных напряжений, возникающих в бетоне в процессе тепло- и массообмена с окружающей средой.

Интенсивное испарение влаги уменьшает степень гидратации цемента и приводит к образованию направленных капилляров, ухудшающих микро-и макроструктуру цементного камня и бетона, резко понижается качество бетона, его плотность, прочность, долговечность. Образование трещин и ухудшение структуры бетона под воздействием переменной по величине солнечной радиации по периметру сооружения приводят к необратимым изменениям в бетоне. Поэтому необходимо обеспечить уменьшение величины и интенсивности испарения влаги из бетона и создать все требуемые условия для полной гидратации цемента и образования оптимальной структуры цементного камня и бетона, благодаря выравниванию градиентов влажности и температуры по сечению стенок сооружения. Это достигается путём влагозащиты и теплозащиты бетона, способствующих выравниванию температуры по сечению и периметру сооружения.

Бетонирование дымовых труб Экибастузских ГРЭС происходило непрерывно и круглосуточно, дымовая труба № 1 на ЭкГРЭС № 1 возводилась в скользящей опалубке, труба № 2 ЭкГРЭС № 1 в переставной. Было практически доказано : даже в самых жёстких климатических условиях при температуре плюс 55 градусов и относительной влажности 25%, темпы подъёма скользящей опалубки достигали 3-4 метра в сутки, а скорость подъёма в переставной опалубке ( труба № 2, ЭкГРЭС № 1 ) составляла всего только 1 метр в сутки. В бетонные смеси вводили самый надёжный, простой, безопастный в применении и успешно применяемый с 1947 года ПАВ – СДБ, который гарантированно обеспечил получение литой ( 24-26 см ) бетонной смеси и одновременно самые высокие проектные марки бетона в сооружении : М400 (класс В30), F300, W8. Лабораторный контроль качества ( теперь называют „мониторинг“ ) производства бетонной смеси на БСУ, при укладке в опалубку, и последующему уходу был сразу организован непрерывно-круглосуточный.

Применение скользящей опалубки для уникального сооружения было осуществлено в СССР впервые, с целью ускорения темпов и качества, учитывая, что при переставной опалубке для сооружения высотой 330 метров, соответственно будет 330 рабочих швов в которых бетон более проницаем, а вся конструкция немонолитная. Однако, торопливость высшего начальства и категорическое требование начать 12 апреля 1978 без запаса строительных материалов необходимого качества, могло привести к аварии, автор статьи был вынужден завысить марку проектируемого бетона, и кроме того строительное управление ССМУ Энерговысотспецстрой не смогло наладить непрерывный и постоянный геодезический контроль приборами PZL — в результате при темпах подъёма опалубки 3-4 метра в сутки возникли отклонения от вертикали до 600 мм. Контрольная проверка ультразвуковыми приборами показала прочность бетона выше проектной ( М450 – М500 ) и только поэтому проектировщики ТЭП согласовали окончательную высоту трубы № 1 = 300 метров, то есть завышение проектной марки бетона автором спасло дымовую трубу № 1 ЭкГРЭС № 1 в 1979 году.

Необходимо отметить : все рабочие-высотники в период строительства были обеспечены жильём, к зарплатам ( основной тариф ) прибавляли высотные надбавки и командировочные ( вахтовый метод ), в Экибастузе не было отбоя от желающих, кроме того был коэффициент 1,3 за трудные условия, в результате средняя зарплата рабочего в месяц достигала 2000 рублей ( при зарплате среднего инженера по стране 150 руб/месяц ).

Экибастузские ГРЭС № 1 и № 2 непрерывно и безаварийно (!) работают в течении более 40 лет производя электрическую энергию для всего Казахстана, что доказывает высокую долговечность бетона и надёжность возведённых советскими строителями дымовых труб. Причём имеются дополнительные мощности, так как электростанции работают не в полную нагрузку, соответственно при необходимости для новых потребителей электроэнергии в Казахстане или за пределами страны, можно увеличить подключив резервные котлоагрегаты.

Опыт строительства в Казахстане при критических параметрах : температуре плюс 55 градусов и относительной влажности воздуха 25% указывает на необходимость строгого выполнения всех требований по подготовке, приготовлению бетонной смеси и уходу за твердеющим бетоном, геодезическому контролю, что обеспечило высокую долговечность сооружений.

В результате применения простейших и надёжных только отечественных : технологии бетона и строительных материалов, был получен огромный экономический эффект, причём следует учесть : возведённые советскими инженерами высотные железобетонные сооружения никогда не красили ( исключение – маркировочная сигнальная покраска для самолётов ), а все небоскрёбы в мире защищены нержавеющим металлом, стеклом и силиконом, старые металло-конструкции, например Эйфелеву башню периодически каждые 7-9 лет красят краской. Необхидимо отметить : так называемая «гидрофобизация» применением ГКЖ ( д.т.н.Ф.М.Иванов и д.т.н.В.Г.Батраков, НИИЖБ ) практически НЕ защищает бетон, так как смывается первым дождём.

Самая надежная защита Бетона – применение ПЕРВИЧНОЙ ЗАЩИТЫ ОТ КОРРОЗИИ по теории и методам Учёного к.т.н. Б.Д.Тринкера.

Опыт возведения самых высоких в Азии железобетонных сооружений на Экибастузской ГРЭС № 1 в 1977-1980 годах, и самой высокой в Мире дымовой трубы на Экибастузской ГРЭС № 2 в 1985, инструкции и документы разработанные Б.Д.Тринкером, были успешно применёны в ХХ1 веке при строительстве небоскрёбов, однако надо понимать, что при всей мощнейшей западной рекламе-пропаганде, но факт : все небоскрёбы облицованы металлом-стеклом-силиконом то есть защищают бетонное ядро жёсткости, Эйфелеву башню красят КРАСКОЙ, а Бетон всех наших сооружений включая Останкинскую Царь-Башню никогда НЕ защищали и НЕ красили !

Заключение :

За создание уникального всепогодного сверх-прочного, сверх-долговечного ВЕЧНОГО Бетона, за ликвидацию Коррозии, за предотвращение и отсутствие техногенных катастроф, несколько раз получали гос-премии кабинетные теоретики, но без самого Главного Автора : к.т.н. Б.Д.Тринкера, а в связи c ликвидацией ВНИИГПЭ и создания ФИПС и пр. «перестройками» — имя Автора вычеркнуто из списка «цитируемых» учёных ХХ века.

Примеры :

1. «От комиссии по премиям Совета Министров СССР за наиболее выдающиеся проекты и строительство башенных железобетонных градирен в скользящей опалубке» от 31 мая 1981 года, список № 3, 19 примкнувших блатных получателей, без самых Главных Авторов Теории и Практичесного применения : отсутствует фамилия Тринкер.

2. Присуждение премии Совета Министров СССР, 1987 год: «за разработку и применение модифицированных Лигносульфонатов ЛТМ», 20 блатных примкнувших, без самых Главных АВТОРОВ Теории и Практичесного применения – отсутствует фамилия Тринкер.

3. присуждение Государственной Премии СССР 1984 года: № 24 в области техники „за разработку теории коррозии бетона и железобетона и создание на её основе долговечных ЖБК массового строительства“ — список из 9 кабинетных «теоретиков», но без самого главного Автора.

Библиография :

1. Патент № 87043 : Способ приготовления пластимента для бетонов и катализатора для размола цементного клинкера; заявлено24.12.1948, опубликовано 01.01.1950 :Б.Д.Тринкер. „Предметом изобретения является способ приготовления пластимента, применяемого в качестве пластификатора для бетонов или в качестве катализатора для размола цементного клинкера“.

2. Тринкер, Б. Д.Из опыта производства и применения пластичного шлакового цемента, Министерство строительства предприятий машиностроения СССР, Техническое управление НИИ по строительству, Отд. техн. Информации, Москва, Машстройиздат, 1950, 10 стр.

3. Тринкер, Б. Д.; Стольников, В.В.Инструкция по изготовлению бетона с применением пластифицированного цемента или обычного цемента с добавкой на месте работ концентратов сульфитно-спиртовой барды, ( ИМ-202-51 ), утверждена 17.10.1951, Государственный комитет Совета Министров СССР по делам строительства, Москва, 1951, 18 стр.

4. Тринкер, Б. Д.Применение пластифицированного цемента и пластифицирующих добавок к бетону, Министерство строительства предприятий машиностроения СССР, Техническое управление, Научно-исследовательский институт по строительству, Москва Ленинград: Гос. издательство литературы по строительству и архитектуре, 1952, 64 стр.

5. Тринкер Б.Д. Повышение долговечности гидротехнического бетона добавками из Сульфитно-Спиртовой Барды ССБ, «Конференция по коррозии бетона и мерам борьбы с ней», 17-20 марта 1953, Москва, Волхонка,14.

6. Тринкер, Б. Д.Влияние поверхностноактивных веществ и электролитов на процессы твердения и морозостойкость бетона Автореферат дис., представл. на соискание учен. степени кандидата техн. Наук, М-во высш. образования СССР. Моск. ордена Ленина хим.-технол. ин-т им. Д.И.Менделеева, Москва, 1955, 20 стр.

7. Тринкер, Б. Д.„Руководство по проектированию и подбору состава гидротехнического и обычного бетона», Министерство строительства РСФСР, Москва, 1957, 54 стр.

8. Тринкер А.Б. «Опыт производства бетонных работ при возведении специальных высотных сооружений в условиях сухого и жаркого климата», журнал «Специальные строительные работы», № 11, 1979, стр. 3 – 9.

9. Тринкер А.Б. «Единая система скоростного бетонирования высотных сооружений», журнал «Бетон и железобетон», № 12, 1983, стр. 20 – 21.

10. Тринкер А.Б. БАШНЯ МОЕГО ОТЦА, «Российская газета», проект Родина, 11 января 2022.

11. CTL Group. “Burj Khalifa, the Tallest Building in the World.” Last modified 2011. Accessed Nov. 15, 2011.

12. Фаликман В.Р. Итоги 2-го международного симпозиума по долговечности и устойчивому развитию железобетона (DSCS-2018), Nanobuild.ru № 4/2018, том.10, стр.162-164.

Bibliography:

1. Patent No. 87043: A way of preparation of the plastiment for concrete and the catalyst for grind of cement clinker; it is stated 12/24/1948, published 1/1/1950: B.D. Trinker. «A subject of an invention is the way of preparation of the plastiment applied as softener to concrete or as the catalyst to grind of cement clinker».

2. Trinker, B. D. From experience of production and use of plastic slag cement, the Ministry of construction of the enterprises of mechanical engineering of the USSR, Technical management of scientific research institute of construction, Otd. техн. Information, Moscow, Mashstroyizdat, 1950, 10 p.

3. Trinker, B. D.; Stewards, V. V. The instruction for production of concrete with use of the plasticized cement or usual cement with additive on the place of works of concentrates sulphitic and alcohol bards, (IM-202-51), is approved 10/17/1951, the State committee of Council of ministers of the USSR for construction, Moscow, 1951, 18 p.

4. Trinker, B. D. Use of the plasticized cement and the plasticizing additives to concrete, the Ministry of construction of the enterprises of mechanical engineering of the USSR, Technical management, Research institute of construction, Moscow Leningrad: State. publishing house of literature on construction and architecture, 1952, 64 p.

5. Trinker B.D. Increase in durability of hydrotechnical concrete additives from Sulphitic and Alcohol Bards of CoB, «A conference on corrosion of concrete and measures of fight against it», on March 17-20, 1953, Moscow, Volhonka, 14.

6. Trinker, B. D. Influence the poverkhnostnoaktivnykh of substances and electrolytes on processes of curing and frost resistance of concrete the Abstract a yew., представл. on a competition Wuchang. candidate’s degrees техн. Sciences, M-in высш. formations of the USSR. Mosk. the Orders of Lenin chemical — технол. in-t of D.I. Mendeleyev, Moscow, 1955, 20 p.

7. Trinker, B. D. «Guide to design and selection of composition of hydrotechnical and usual concrete», Ministry of construction of RSFSR, Moscow, 1957, 54 p.

8. Trinker A.B. «Experience of production of concrete works at construction of special high-rise constructions in conditions arid and hot climate», magazine «Special construction works», No. 11, 1979, p. 3 — 9.

9. Trinker A.B. «Uniform system of high-speed concreting high-rise constructions», Beton I Zhelezobeton magazine, No. 12, 1983, p. 20 — 21.

10. Trinker A.B. Tower of my FATHER, Rossiyskaya Gazeta, project Homeland, on January 11, 2022.

11. CTL Group. «Burj Khalifa, Tallest Building in the World.» Last modified 2011. Accessed Nov. 15, 2011.

12. Falikman V.R. Results of the 2nd international symposium on durability and sustainable development of reinforced concrete (DSCS-2018), Nanobuild.ru No. 4/2018, volume.10, p. 162-164.

Durability of reinforced concrete — the theory and practice

A.B.Trinker, Dr.Sci.Tech.

Abstract: in 2010 in the UAE the highest building in the world was built, and in 1979 in Kazakhstan domestic builders constructed the highest construction in Asia, in the same roast, but sharp and continental climate with very cold winter. Huge difference: at constant climate and humidity of 90% in the UAE ; in Ekibastuz humidity of 25% with a temperature in the summer of 55 degrees, in the winter minus 40 degrees, but we built continuously and round the clock, and in the UAE built 2 times a week only at night and only. The only advantage at builders in XX1 is a century excellent communication.

Keywords: great inventors of the XX century, catastrophic climate, all-weather durable concrete, rates and quality

31.08.2018. A.T.

Механические воздействия

При проектировании бетонных изделий, несущих и прочих конструкций их массивность и объем зависят от нагрузки, которую будет испытывать материал в течение всего срока эксплуатации. Механические нагрузки разделяют на статические, характер которых подразумевает постоянное воздействие и динамические, возникающие в виде кратковременно воздействующих сил изменяющейся амплитуды. Наличие динамических ударов является причиной усадочных деформаций, которые проявляются со временем при наличии значительных нагрузок. Характеристика твердости бетона непосредственно зависит от марки использованного цемента.

С течением времени истирание и износ являются причиной разрушения целостности бетонных поверхностей. Перегрузки способствуют появлению внутреннего напряжения конструкций, снижающего их долговечность.

Государственные стандарты на приготовления бетонных составов

После появления в ГОСТ 26633-91 пункта 1.6.2 о возможности применения составов, показателями качества, которых находятся ниже требований ГОСТ (после проведения исследований в специализированных центрах), показатели качества бетонных конструкций начали снижаться. В государственном стандарте нет четкой формулировки о требованиях к проведению таких исследований. Поэтому, чтобы возводимые конструкции имели длительный срок эксплуатации, особое внимание следует уделить наличию примесей в заполнителях. Для создания морозостойких бетонов целесообразно использовать цементы с содержанием щелочей, не превышающим 0,6%.Также следует убедиться в необходимости использования цементов, содержащих белит, которые рекомендуется к применению при возведении массивных конструкций, а также объектов в условиях жаркого климата.


Несбалансированное содержание гипса и щелочей провоцирует быстрое схватывание, в результате чего появляются «быстряки». Чем выше содержание белита в цементе, тем важнее процентное содержание S03.

Контакт с водой

В течение длительного периода многие бетонные изделия и конструкции эксплуатируются в контакте с водной средой. При этом влага может представлять собой грунтовые, сточные, речные, морские воды. Сезонные осадки в виде дождей и снега также представляют собой один из факторов воздействия на бетон. Для железобетонных изделий, прочность которых усилена за счет арматурного каркаса, контакт с водой может повлечь за собой коррозию металлических стержней. Водонепроницаемость материала зависит от числа доступных макропор в открытом состоянии, которые появляются в процессе испарения избыточной жидкости, а также наличия технологических трещин. Для снижения уровня воздействия бетонов используют специальные присадки, применяют технологию вибролитья, которая позволяет максимально снизить пористость материала и его проницаемость.

Марка бетона (М)

Во всех информационных материалах, прайс-листах и т.д. бетон указывается с цифровым и буквенным индексом. Обязательно указываются марка М-, класс В-, подвижность П-, водонепроницаемость W-, морозостойкость F-

Ваш проект определяет выбор определенного вида и марки бетона. Если проекта нет, то можно прислушаться к советам строителей или разобраться в этом самостоятельно.

Цифры марки бетона обозначают усредненный предел прочности на сжатие в кгс/кв.см. Проверка соответствия заявленной марке бетона проводится с помощью отливки из пробы смеси кубиков или цилиндров и выдержки их 28 суток для твердения.

В настоящее время используется такая характеристика бетона как класс — это примерно то же самое, что и марка, но с тем лишь различием, что в марках указывается среднее значение прочности, а в классах — прочность с гарантированной обеспеченностью с коэффициентом вариации 13%. В соответствие со СТ СЭВ 1460 все современные проектные требования указываются именно в классах, хотя большинство строительных компаний используют для заказа марку.

Для Вас важно, чтобы марка бетона соответствовала той, которую Вы заказывали. Как проверить? Для этого необходимо взять пробу и отлить из нее несколько кубиков размером 10Х10Х10 см или 15Х15Х15 см. Удобнее всего для этого использовать сколоченные из дощечек нужные формы, предварительно увлажнив их, чтобы они не впитывали входящую в состав бетона воду и не препятствовали гидратации. Для чистоты эксперимента необходимо проштыковать залитую смесь, чтобы не осталось воздушных пустот. Также можно уплотнить смесь, ударяя по бокам формы молотком.. Пробы нужно брать непосредственно с лотка бетононосителя, не разбавлять взятую смесь в автобетоносмесителе, тщательно уплотнить смесь в формах и хранить при средней температуре (около 20 С) и высокой влажности.

По истечение 28 дней в любой независимой лаборатории можно проверить соответствие марки Вашего бетона с заявленной. Есть также промежуточные стадии твердения — 3, 7, 14 суток. В течение первых семи дней бетон набирает 70 % своей прочности. Существуют еще и другие методы определения прочности — это так называемые, неразрушимые методы замера, «на месте». К ним относятся метод ударного импульса («простучать бетон»), ультразвуковые методы и другие.
Класс бетона

Средняя прочность бетона данного класса, кгс/кв.смБлижайшая марка бетона
В3,5 В5 В7,5 В10 В12,5 В15 В20 В25 В30 В35 В40 В45 В50 В55 В6046 65 98 131 164 196 262 327 393 458 524 589 655 720 786М50 М75 М100 М150 М150 М200 М250 М350 М400 М450 М550 М600 М600 М700 М800

Химические факторы

Химическая коррозия бетона наблюдается в результате действия органических соединений, растворов солей, щелочей, кислот и их оксидов в жидком и газообразном состоянии. Динамика деструктивных процессов зависит от степени агрессивности воздействующей среды, минералогического состава строительного материала. Скорость разрушения является функцией от уровня растворимости бетонной поверхности, а именно: ее составных частей, в процессе реакции с раствором. Эффективной методикой для продления срока службы бетона при опасности химической коррозии, является гидроизоляция, которая формируется в виде внешнего покрытия на основе специальных материалов, не вступающих в реакцию с агрессивной средой.

Фактическая долговечность


Опыт использования конструкций данных типов имеет многовековую историю. Самым древним объектом, в строительстве которого применялся легкий бетон, считается «храм всех богов» Пантеон, возраст которого превышает 2000 лет. Несмотря на то, что заявленный срок службы железобетонных сооружений составляет всего 150 лет, существуют конструкции аналогичного возраста, хорошо сохранившиеся до наших дней.

Для расчета долговечности бетона и железобетона в наши дни используются специальные формулы ВНИИ, согласно которым, на самом низком уровне показатель равен 5 годам, на самом высоком – 269 лет.

Как долго можно держать бетон в миксере?

Перевозка бетонной

смеси должна сохранить ее температуру и подвижность. Продолжительность транспортирования товарного
бетона
с температурой 25°C не должна превышать полчаса-час, а при 30°С – 15…25 мин.

Интересные материалы:

Как определить объем паллеты? Как определить ольха? Как определить ортофосфорную кислоту? Как определить острый или тупой угол? Как определить относительную влажность воздуха география? Как определить относительную влажность воздуха? Как определить параметры светодиодной ленты? Как определить петличный микрофон? Как определить пороки древесины? Как определить правую и левую мойку?

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]